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Abstract 
Natural gas hydrate is a major flow assurance problem encountered in the transportation of natural 
gas, onshore and most especially offshore and cold environment. The formation of hydrate plugs can 
be a costly problem in pipelines as it impedes transmission of natural gas leading to operational and 
economic challenges. The prediction of natural gas hydrate formation condition is key to inhibiting their 
formations in pipelines. This study investigates the prediction of gas hydrate formation temperature 
using artificial neural network (ANN) and firefly algorithm (FA). The effectiveness of these techniques 
was evaluated, and new correlations were developed. The experimental data containing specific 
gravity, pressure, and temperature, drawn from literature was used in the model development. 
Statistical and graphical performance analysis showed that ANN had the better performance with the 
least MSE and MAPE of 0.10376 and 0.005944 comparism FA which gave 113.00670 and 0.18479 
respectively. The results showed that the ANN and FA are viable tools for natural gas hydrate formation 
temperature prediction. 
Keywords: Gas hydrate; Artificial neural network; Firefly algorithm; Temperature; Pressure. 

1. Introduction

Demand for cleaner energy due to the ever-increasing concern for the climate is the reason
the petroleum industry is tilting towards natural gas production. Natural gas is gradually be-
coming the major source of energy due to its abundance, availability, economic viability, and 
environmental friendliness [1]. Produced natural gas needs to be transported usually over a 
very long distance through pipeline network from the wellhead to the treatment and process 
facility and sometimes to the final consumers. These pipelines can travel through cold envi-
ronment while the pressure condition in them could be favourable to hydrate formation. Gas 
hydrates are ice-like crystalline solids formed as a result of the interaction between gas and 
water molecules at low temperature and high pressure [2]. Gas Hydrates are cages of water 
molecules (host) with gases molecules (guest) trapped in the cavities and bounded to the 
hydrogen bond of the water molecules. Light hydrocarbon gases, acid gases and water-soluble 
polar compounds are the guest molecules found in gas hydrate. Historically, Sir Humphrey 
Davy in 1810, discovered gas hydrate. From 1810 to 1900s other hydrate formers were dis-
covered due to laboratory curiousity [3-5]. A technical discovery that gas hydrates were the 
cause of gas pipeline plugging above water freezing conditions was made by Hammerschmidt. 
Efforts have however been made to developed mitigation strategies and regulations been 
placed on water content in pipelines to control hydrate formation [3, 5-6]. 

Gas hydrates have three known unit crystal structures, the sI, sII, and sH. The three struc-
tures are composed of cages with cavities of different sizes. The cubic structure I or sI have 
512 and 51262 cages with 4.0-5.5Å, and can take guests with a smaller diameter compare to 
the cubic structure II or sII (6.0-7.0Å) 512 and larger 51264 cages. The sII 51262 cage is smaller 
than sI 51264 and larger than 512. The hexagonal structure H has the largest cage 51268 and 
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two other smaller cages 512 and 435663. sH can take mixtures of small (4.0-5.5Å) guest mol-
ecules and larger (8.0-9.0Å) guest molecules. Most hydrates found outside the pipeline in 
nature are usually found to exist in sI structures while the sII structures are found to exist 
mostly in oil and gas operations and processes. The sH structures can occur in either environment.  

For gas hydrate formation to be initiated the following conditions must be simultaneously 
satisfied: presence of hydrate former (like methane, ethane, carbon dioxide and hydrogen 
sulfide), presence of water (in the right quantity) and right combination of pressure and tem-
perature (usually low temperature and high pressure). If any of the conditions is violated 
hydrate formation will not be initiated and will be discontinued when initiated already. The 
presence of high velocity fluid, agitation, nucleation sites and seed crystals of hydrate favors 
and hence enhance gas hydrate formation. Hydrate nucleate, grow, agglomerate and eventu-
ally plug pipelines when not controlled effectively. Hydrate plug pose a very great danger to 
the lives, environment and nearby infrastructure including the pipelines, hydrate plugs cost 
the industry billions of dollars in prevention and remediation.  Damages caused by corrosion 
due to presence of hydrate are greater than hydrate plugging as plug ruptures pipeline while 
corrosion can go as far as the deteriorating of the pipeline and causing a larger section or the 
entirety of the pipeline to be replaced [7]. Hydrate, ice, hydrocarbon vapor, liquid water, and 
hydrocarbon liquid are usually represented by the letters H, I, V, LW, and LHC respectively on 
the natural gas hydrate phase diagram. The lower quadruple point, which shows the stage at 
which the four-phase ice, liquid water, hydrocarbon vapor and hydrate (I-LW-H-V) are in equi-
librium is usually represented by Q1. The temperature approximates the ice point at this point. 
The upper quadruple point of equilibrium between the four-phase systems water liquid, hy-
drocarbon liquid, hydrocarbon vapor, and hydrate is usually represented as Q2 (LW-LHC-V-H). 
The Q1Q2 line's pressures and temperatures represent the conditions that are in equilibrium 
between three-phase liquid water, hydrocarbon vapor and hydrate. The hydrate region exists 
to the left of the three phase lines (I-H-V), (LW-H-V), (LW-H-LHC) and at the right the phases 
exist for liquid water or ice and the hydrocarbon liquid or vapour [8]. The temperature and 
pressure along line Q1Q2 indicates the maximum temperature at a particular pressure and the 
minimum pressure for a particular temperature for each hydrocarbon mixtures with water. 
Higher pressure is usually needed for methane to form hydrate compare to the other lager 
hydrocarbon. However, as the molecular size increases the pressure required for hydrate for-
mation decreases.  

Prevention of hydrate formation can be done in several ways. Removal of water upon pro-
duction will go a long way in preventing hydrate formation, but it is not often the most cost-
effective method. Effective avoidance of hydrate formation can be done by addition of chem-
icals, and by heating or insulating (the thermal method) the pipeline. The thermal method 
makes use of hot water jacket, conductive or inductive heat tracing to add heat to the pipe-
lines. The heat added or insulation prevent the gas from losing heat and/or keep the gas 
transported at a relatively high temperature, outside the hydrate formation region. Chemicals 
such as thermodynamic inhibitor hydrogen-bond themselves to free-water molecules, thereby 
reducing the water available to form hydrate. Thermodynamic inhibitors used are typically 
alcohols (such as methanol) and glycols (such as mono-ethylene glycol). Another chemical 
method used to control hydrate formation is the low dosage hydrate inhibitors (LDHI). There 
are two types of LDHIs: the “kinetic hydrate inhibitors” (KHIs) and the “anti-agglomerants” 
(AAs). The KHIs are high molecular weight polymeric chemicals such as poly [N-vinyl pyrroli-
done] [9-10] that significantly delay the crystal nucleation or growth of hydrates in pipelines. 
The AAs are surface active chemicals (such as alkyl aromatic sulphonates), they allow hydrate 
crystals to form but they prevent their growth and keep them well dispersed. This prevent the 
hydrate crystals from agglomerating to plug pipelines, instead they will be transported with 
the fluids [11].  

After hydrate plug discovery, studies started on various techniques to predict gas hydrate 
formation conditions. The method called the distribution coefficient method (Kvsi-value) was 
initiated by Wilcox in 1941, it uses the vapor/solid equilibrium ratio in equation (1) for predic-
tion:  
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𝐾𝐾𝑣𝑣𝑣𝑣𝑣𝑣 = 𝑦𝑦𝑖𝑖
𝑥𝑥𝑠𝑠𝑖𝑖

  (1) 
where: 𝑦𝑦𝑣𝑣 = mole fraction of component 𝑖𝑖 in the water-free vapour and 𝑥𝑥𝑣𝑣𝑣𝑣 = mole fraction of 
component 𝑖𝑖 in the water-free, solid hydrate. 

The Kvsi values for natural gas component are presented as a function of temperature and 
pressure in charts.  

The gas gravity method makes use of the gas-gravity chart to relate pressure, temperature, 
and specific gravity (molecular mass of the gas divided by that of air) of natural gases. The 
gas gravity chart was generated from limited available data and significant calculations based 
on the Kvsi-value method. The inaccuracies in this method as reported by Sloan limits this 
method to be used as an approximate method or an initiate estimate of hydrate forming con-
ditions [12]. 

Several correlations have been proposed and developed by different authors to describe 
the relation between pressure, temperature and gas gravity. The proposed correlation in equa-
tion (2) for gas hydrate formation [13]. 
𝑇𝑇 = 8.9𝑃𝑃0.285  (2) 

where 𝑇𝑇 𝑎𝑎𝑛𝑛𝑛𝑛 𝑃𝑃 are temperature in °F and pressure in psi of hydrate formation respectively. 
The correlation using temperature and gas gravity to calculate hydrate formation pressure [14]. 

This correlation in equation (3) was develop by Elgibaly and Elkame [15]. 
𝑙𝑙𝑙𝑙𝑙𝑙 𝑃𝑃𝑚𝑚 =  𝛽𝛽𝑚𝑚 + 0.0497�𝑇𝑇𝑚𝑚 + 𝑘𝑘𝑇𝑇𝑚𝑚2� − 1  (3) 

where 
𝛽𝛽𝑚𝑚 = 2.681 − 3.811𝛾𝛾 + 1.679𝛾𝛾2                                 (4) 
𝑘𝑘𝑚𝑚 = −0.006 + 0.011𝛾𝛾 + 0.011𝛾𝛾2  (5) 

where Pm is pressure in MPa, Tm is temperature in Celsius and 𝛾𝛾 is specific gravity 
Motiee presented his correlation in equation (6) for solving for hydrate temperature using 

pressure and gas gravity. 
𝑇𝑇 =  −238.24469 + 78.99667 𝑙𝑙𝑙𝑙𝑙𝑙(𝑃𝑃) − 5.352544(𝑙𝑙𝑙𝑙𝑙𝑙(𝑃𝑃))2 + 349.473877𝛾𝛾 −
150.854675𝛾𝛾2 − 27.604065 𝑙𝑙𝑙𝑙𝑙𝑙(𝑃𝑃)𝛾𝛾  (6) 

where 𝑇𝑇 is hydrate temperature in °F, 𝑃𝑃 is the pressure in psi and 𝛾𝛾 is the gas gravity. 
The correlation in equation (7) proposed by Towler and Mokhatab [16] relating hydrate tem-

perature to pressure and gas gravity is given by: 
𝑇𝑇 = 13.47 𝑙𝑙𝑛𝑛(𝑃𝑃) + 34.27 𝑙𝑙𝑛𝑛(𝛾𝛾) − 1.675 𝑙𝑙𝑛𝑛(𝑃𝑃) 𝑙𝑙𝑛𝑛(𝛾𝛾) − 20.35  (7) 

where T is hydrate temperature in °F, P is the pressure in psi and γ is the gas gravity. 
The correlation temperature and pressure explicit form developed by Salufu and Nwakwo [17] is 

given in equation (8). They correlated hydrate formation temperature, pressure, specific grav-
ity and water vapor pressure using gravity method and statistical analysis software.  
𝑇𝑇 = 𝐴𝐴′[𝑙𝑙𝑛𝑛 𝑃𝑃 − 𝑙𝑙𝑛𝑛(𝐵𝐵𝛾𝛾)]  (8) 

where 𝑇𝑇 is hydrate temperature in °F, 𝑃𝑃 is the pressure in Psi and 𝛾𝛾 is the gas gravity. 

Table 1. Correlations for predicting hydrate formation conditions [17] 

1≥ 𝛾𝛾 ≤ 0.59 0.1 ≤ 𝛾𝛾≤ 0.559 0.6 ≤ 𝛾𝛾 ≤ 0.59 
A'  B  A'  B  A'  B 
10.9529  2.4196 16.2602 105.35

8 
12.121
2  

8.751
1 

1.1. Artificial Neural Network 

Artificial neural networks (ANNs) are biologically inspired computing systems, which imitate 
the decision process in the biological central nervous system nerve cell (neuron) network. 
ANNs are the non-linear mathematical models that are highly regarded for their simplicity, 
flexibility, and availability. This model is used in predicting complex non-linear systems and 
discovering new patterns without using a mathematical model for the system by establishing 
relationships between input and output data. 

The most common architecture is the artificial feed forward neural network, and a network 
with several layers is called multi-layer neural networks while one layer is referred to as single 
layer. The Neurons used are labelled with j collects an input from the predecessor neurons; 
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various components of the neurons are: activation 𝑎𝑎j(t), threshold 𝜃𝜃j, activation function and 
output function. 

Representing the above scheme into a mathematical formula will give: 
𝑧𝑧 = ∑ 𝑤𝑤𝑣𝑣𝑥𝑥𝑣𝑣𝑣𝑣  =  𝑤𝑤𝑇𝑇𝑥𝑥  (9) 

To include the neuron activation, the formula becomes: 
𝑧𝑧 = ∑ 𝑤𝑤𝑣𝑣𝑥𝑥𝑣𝑣𝑣𝑣 + 𝑏𝑏 = [𝑤𝑤𝑇𝑇𝑥𝑥] �𝑥𝑥1�  (10) 

The often used activation function is a threshold, sigmoidal and tangent hyperbolic functions. 
Firefly algorithm (FA) on the other hand is regarded as smart, metaheuristic and inspired 

by natural swarm (firefly swarm), it was developed in 2008 by Xin-She Yang. It is based on 
swarming and light flashing patterns of fireflies. FA follows three idealized rules: all fireflies 
are unisex; the attractiveness is proportional to the brightness and they both decrease as their 
distance increases; the brightness of a firefly is determined by the landscape of the objective 
function. 

In optimizing, random generation are used to initialise problem variables in a search place. 
Brightness/attractiveness of fireflies are evaluated using the light intensities, this is done after 
initialization. The firefly brightness is shortened and ranked based on their light intensity. The 
positions of the fireflies are updated based on their ranking. After updating, fireflies might 
occupy new positions out the defined limit. 

The distance between the fireflies is given as 𝑟𝑟𝑣𝑣,𝑗𝑗 in equation (11) below: 
𝑟𝑟𝑣𝑣,𝑗𝑗 =  �𝑋𝑋𝑗𝑗 − 𝑋𝑋𝑣𝑣�  (11) 

The movement of fireflies as a result of variation in brightness is given as 𝑋𝑋𝑘𝑘𝑚𝑚+1in equation 
(12) below 
𝑋𝑋𝑣𝑣𝑡𝑡+1 = 𝑋𝑋𝑣𝑣𝑡𝑡 +  𝛽𝛽𝑜𝑜𝑒𝑒

−𝛾𝛾𝑟𝑟𝑖𝑖𝑖𝑖,
2
�𝑋𝑋𝑗𝑗𝑡𝑡 − 𝑋𝑋𝑙𝑙𝑡𝑡� + 𝛼𝛼𝜖𝜖𝑣𝑣𝑡𝑡  (12) 

where 𝑟𝑟𝑣𝑣,𝑗𝑗 is the distance between two fireflies (𝑖𝑖 and 𝑗𝑗); 𝛽𝛽𝑜𝑜 is the attractiveness of a firefly at 
zero distance; 𝛼𝛼 is a parameter controlling the strength of the randomization term and 𝜖𝜖𝑣𝑣𝑡𝑡 is 
being drawn from nominal distribution. 

Odutola and Aliyu [10] predicted the equilibrium hydrate formation pressure for single gases 
(methane and ethane) in the presence and absence of thermodynamic hydrate inhibitors (THI) 
using HYDOFF software and compared to the result to over 114 published experimental data 
points. There was a close match between the predicted and experimental data with a coeffi-
cient of determination of 0.97 for methane system and 0.90 for ethane system. Odutola and 
Anunihu[18] in 2019 however compared four different hydrate prediction methods (Hysys sim-
ulation, Hammerschdmit correlation, Towler and Mokhatab correlation and Katz chart) in pre-
dicting hydrate formation conditions for methane-ethane binary gas systems with varying 
mole fractions of methane (56.4%, 90.4%, 95.6%, 97.1%, and 98.8%). The Hysys simulation 
preformed best and had the least prediction error in the methane-ethane binary systems they 
considered. The study conducted by Heydari et al. [19] to determine the predictive ability of 
ANN in predicting the conditions in which gas hydrate occurs in flow lines. To process the 167 
raw data in the ranges of 32 – 74°F, 50 – 4200 psia, and 0.554 – 1.000 for temperature, 
pressure, and specific gravity, respectively. The neural network was tested using 18 pieces of 
data. The prediction of hydrate formation in natural gas was built using two hidden layers, 
each of which has seven and five neurons. Each of the networks under their study was trained 
three times to ensure that the results could be reproduced. After a series of testing, 7-5-1 as 
the ideal ANN structure was chosen. The ANN model created outperforms the Sloan model as 
well, with an R2 value of 0.9941 and a maximum error of 3.035 percent. Their work showed 
the necessity to collect a large amount of data to train the model to increase accuracy because 
the main drawback of the model that was demonstrated in their study and its significantly 
dependent on data. An investigation on prediction of hydrate formation temperature (HTF) 
using Artificial Neural Network used 356 input data with following range 31.95 - 78.80 0F for 
temperature data, 50.98 - 3874.10 psi for pressure values and 0.6 – 1.0 specific gravity values [20]. 
They employed back propagation architecture artificial neural network algorithm due to its 
effectiveness compared to other algorithms. Their results showed a higher predictive accuracy 
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of ANN model built in predicting gas hydrate formation condition compared to existing math-
ematical models.  

A new correlation developed by Seyyed and Dehghani [21] for predicting gas hydrate for-
mation temperature using Genetic Algorithm (GA), PSO and Imperialist Competitive Algorithm 
(ICA) with the use of Gaussian equation. Over 120 data points were gathered with pressure 
range of 2.77 to 1000 bar and temperature range of 275 to 330K. An effective comparative 
analysis of different models observed based on GA, PSO and ICA was also performed. The 
results showed PSO algorithm gives the best prediction of the hydrate temperature with the 
highest co-efficient of determination and the lowest root mean square error compared to GA 
and ICA. Hashim et al. [22] came up with an empirical model for predicting gas hydrate for-
mation temperature based on Genetic Algorithm (GA), PSO algorithm with the use of Gaussian 
equation. Pressure and temperature ranges of 1.30 - 10.82 MPa and 259.10 to 292.35 K 
respectively were used. They observed PSO algorithm gave the best prediction of the hydrate 
temperature with the least minimum error of 0.6 and 0.1. This is a positive result for natural 
gas industry as the Particle Swamp Optimization algorithm is very good for prediction of hy-
drate formation conditions with maximum accuracy. A system to predict hydrate formation 
that are been formed in pipe lines [23]. Prototype and regression model associated with Wire-
less Sensor Network (WSN) was compared to Artificial Neural Network (ANN) Model. The result 
of the investigation shows that Wireless Sensor Network (WSN) prediction of hydrate for-
mation is of higher capability when compared to ANN.  

However, economic analysis is required to determine most suitable one for industrial pur-
poses. The importance of the estimation of the temperature and pressure at which hydrates 
are formed which is the first measure that is usually taken to prevent hydrate formation, and 
the importance of using a correlation or model with high accuracy. Megat [24] in his research, 
two alternative methods that use empirical data to estimate hydrate formation pressure for 
diverse gas systems were devised, namely artificial neural network (ANN) and adaptive neuro-
fuzzy interference system (ANFIS model).  The ANN model divides all data into three groups 
at random: training, cross-fitting (monitoring), and test, which account for 60%, 20%, and 
20% of the total data utilized in the project, respectively. The results show that the outcomes 
of data-driven models are more accurate than those achieved from the three experimental 
models, which were created [23,25-26]. His study showed that Hammerschmidth [25] model could 
only be used to make educated guesses about the hydrate formation circumstances because 
it gave inaccurate estimations of the hydrate formation pressure. The models of Kobayashi 
and Motiee [23,26] made precise predictions about the pressure at which hydrates form. The 
ANFIS model surpasses the ANN model among the two data-driven models he utilized in terms 
of response. This can be attributed to the fact that the ANFIS system is designed for each data 
set under different rules and fuzzy inference system parameters set during the training phase. 
Data in the ANFIS model are classified according to the degree of dispersion around some 
data that are known as the cluster center. He also emphasized that ANN needs too much 
information to deliver a trustworthy, low-error complete response.  

Moreover, Odutola et al. compared the effectiveness of artificial neural network for predict-
ing hydrate formation temperature to that of Mokhtab, Hammerschmidt, Bahadori, Vuthalaru 
using 459 experimental points from Katz and Wilcox et al. chart [27]. The temperature range 
was 49 – 4000 psia and 0.5539 - 1.0 specific gravity. Observation from their result shows a 
3.5 mean absolute percentage error and a reduction in R2 as the specific gravity of the natural 
gas increases. The efficiency of ANN in predicting hydrate formation condition reduces with 
increasing specific gravity of the gas. The ANN gave 0.0149 average deviation, SEM 0.0043 
and MAPE 3.5185.15, Megat [24] used ANN tool command in Matlab software to predict the 
methane gas hydrate growth rate with temperature and pressure input data using the multi-
layer perceptron (MLP) back propagation method. The training produced a lower mean square 
error thus suitable for training and prediction of hydrate growth rate. The three models gave 
R2, MSE are 0.999, 0.0005995; 0.999, 0.001698 and 0.989. 0.0005937. The limitation of the 
model prediction however shows model is only valid for a range of input pressure and tem-
perature and thus cannot predict where pressure and temperature is not trained as input data. 
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2. Methodology 

2.1. Data collection and preparation 

In this research, 142 data points are gathered [28] on hydrate formation conditions. This 
data includes actual pressure and temperature for natural gases with different specific gravi-
ties in conditions that gas hydrate form (the three phases are in equilibrium). The input vari-
ables for this data is the gas specific gravity and pressure, while the output is the temperature 
of the gas. This data covers a pressure range of 58.5 - 4200 psia, temperature range of 32 – 
74 °F and specific gas gravity range of 0.554 to 1.   

Table 2. Statistical summary of the 142 data set 

Parameter Specific gravity Pressure (psia) Temperature (℉) 
Mean 0.7340 842.8 52.8 
Median 0.7000 469.0 53.0 
Standard Deviation 0.1490 941.7 12.6 
Variance 0.0220 886843.7 159.0 
Minimum 0.5540 58.5 32.0 
Maximum 1.0000 4200.0 74.0 
Percentile 25% 0.6000 216.8 42.0 
Percentile 50% 0.7000 469.0 53.0 
Percentile 75% 0.9000 1000.0 63.5 
Range 0.4460 4141.5 42.0 

2.2. Artificial neural network model development 

The following properties determines the structure of the ANN model: number of input layer, 
hidden layer and output layer, network type, number of neurons, transfer function, training 
function and adaption learning function. In developing the model 70% of the datasets was 
used to train the model, the training data set covered the entire data range. 15% each of the 
remaining dataset was used to validate the model and test the model. The network type used 
in developing this model is the feed-forward back propagation. The best network was obtained 
by trial and error by changing one of the properties while keeping the others constant till the 
lowest prediction errors were obtained. The performance of each network was examined using 
mean square error (MSE) and other performance criteria to determine the best network. 

 
Figure 1. The Schematic Structure of the Applied Neural 
Network 

The best network had 10, 5 neu-
rons in each of the two hidden layer 
and the transfer functions used was 
Log-sigmoid (logsig). The tangent 
sigmoid (tansig) transfer function 
was used in the output layer. Table 3 
below shows the properties of the 
best network. Figure 1 depicts the 
schematic structure of the applied 
neural network, with its two inputs 
and single output.  
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Table 3. Properties of the best network 

Network type Feed-forward back propagation 
Training function Bayesian regularization 
Number of layers 3 
Number of neurons in each lay-

 
5, 5, 1 

Transfer function of each layers logsig, logsig, tansig 

2.3. Firefly algorithm development 

Implementing firefly algorithm to develop a data driven model based on equation (13) 
below consist of the following steps 
𝑇𝑇(𝑣𝑣) = 𝑏𝑏 × �𝑃𝑃(𝑣𝑣)

𝑐𝑐� + �𝑛𝑛 × 𝐺𝐺(𝑣𝑣)� + �𝑒𝑒 × 𝐺𝐺(𝑣𝑣)
2�  (13) 

Step 1: Select the FA parameters  
Step 2: Calculate the predicted gas hydrate formation temperature for each sample data in 
the FA population applying the optimal values b, c, d, and e. 
Step 3: Calculate the fitness function for each sample data. MSE is the objective function FA 
is aiming to minimise. 
Step 4: Rank each sample in the population ascending according to its fitness function and 
update the firefly position. 
Step 5: Repeat steps 2 to 4 for the next and subsequent iterations until all the specified 
iterations are completed. 
Step 6: Record the lowest MSE and the best optimal values obtained in the last iteration and 
use the optimal values to calculate the model to evaluate the hydrate formation temperature. 
Step 7: Repeat the algorithm several times to verify it is converging to a stable solution. 
Step 8: Run the FA code by varying values of 𝛾𝛾𝑓𝑓, 𝛼𝛼𝑓𝑓, 𝛽𝛽𝑓𝑓, nPop and MaxIt to establish the best 
outcome. 

3. Results and discussions 

 
Figure 2. Regression Plot for ANN 

ANN architecture used for this work was 
chosen based on the MSE and the R values. 
The network used was developed using the 
Bayesian Regression (trainbr) training func-
tion, Gradient descent with momentum weight 
and bias (learngdm) adaptation learning func-
tion, 3 layers; Log-sigmoid (logsig) transfer 
function and 5 neurons in the first layer and 
second layer, and Hyperbolic tangent sigmoid 
(tansig) transfer function in the third layer.The 
network regression plot which plots the predict 
data against the experimental (target) data 
can be shown in Figure 2, the plot shows the 
R value for the network was gotten as 0.99959 
after 387 iterations. 

Comparing the results from the ANN in this work to MLP 2-B-L (ANN) developed by Offisong [28]. 
The Network developed in this work produced better results, given the R value and MSE for 
the MLP 2-B-L are 0.99937 and 0.26763 respectively compared to the R value and MSE of 
0.99959 and 0.10376 respectively gotten from this work. The differences in MLP 2-B-L model 
when compared to network used in this work would be responsible for the difference in results.  
The following are some of the similarities observed in both networks, feedforward back prop-
agation, log-sigmoid transfer function and 2 hidden layers. MLP 2-B-L was developed using 7 
and 5 neurons in the hidden layers as opposed to the 5 neurons in each hidden layer of the 
network in this work. Information like the training function and adaptation learning function 
used to developing MLP 2-B-L were not stated. For the firefly algorithm model, the parameters 
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assigned to the FA were the maximum number of iterations MaxIt, number of fireflies (swarm 
size) nPop, light absorption coefficient 𝛾𝛾𝑓𝑓, attraction coefficient base value 𝛽𝛽𝑓𝑓, mutation coef-
ficient 𝛼𝛼𝑓𝑓, mutation coefficient damping ratio (𝛼𝛼𝑓𝑓 _damp), uniform mutation range δ. These 
parameters have significant effect on the performance of FA. The performance was analyzed 
by evaluating the fitness function in terms of the R value and mean square error (MSE) in 
predicting the temperature data from the data fed to the algorithm. The firefly algorithm pa-
rameters used for this study is shown in Table 4 below; 

Table 4. Firefly algorithm parameters 

Parameter Value Parameter Value 
MaxIt 1000 𝛼𝛼𝑓𝑓 0.2 
nPop 40 𝛼𝛼𝑓𝑓 _damp 0.98 
𝜸𝜸𝒇𝒇 1 δ 0.05 
𝜷𝜷𝒇𝒇 2   

 
The result obtained the least mean square error (MSE) in the range 113.00670. Figure 3 

shows the regression plot for the FA model with a R2 value of 0.8175.  
The FA model obtained is given as equation (14), repeated below 

𝑇𝑇(𝑣𝑣) = 𝑏𝑏 × �𝑃𝑃(𝑣𝑣)
𝑐𝑐� + �𝑛𝑛 × 𝐺𝐺(𝑣𝑣)� + �𝑒𝑒 × 𝐺𝐺(𝑣𝑣)

2�  (14) 
where:𝑇𝑇(𝑣𝑣) is temperature in ℉; 𝑃𝑃(𝑣𝑣) is pressure in psia; 𝐺𝐺(𝑣𝑣) is specific gravity; number of par-
ticles required; b = 8.4711; c = 0.2631; d = -4.1265 ; 
e = 3.8689. 

 

 
Figure 3. Regression Plot for Firefly Algorithm Figure 4. Regression Plot for Hammerschmidt Cor-

relation 

Hammerschmidt, Motiee, and Towler and Mokhatab’s correlations in equations (3), (7) and 
(8) respectively were used to predict hydrate formation temperature, regression plot was 
generated for each of the correlations (Figure 4 to Figure 6).  The results gotten from the ANN 
and FA models were compared to the correlations that has been used to predict hydrate for-
mation temperature. Error analysis were performed statistically and graphically to evaluate 
the results gotten from the models and correlations. 

Figures 7 – 11 however, are graphical evaluation, comparing the predicted hydrate for-
mation temperature to the experimental data for the models and correlations. Prediction per-
formance of the various model, algorithm and correlations were compared using MSE, R and 
R2 values, MAPE, Chi-square and SEP (Table 5).  
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Figure 5. Regression Plot for Motiee correlation Figure 6. Regression Plot for Towler and Mo-

khatah correlation 

 
Figure 7. Comparison of experimental data and results of ANN model 

Table 5. Performance and error analysis 

 ANN FA Hammerschmidt Motiee Towler and Mo-
khatab 

MSE 0.1037 113.0067 80.4110 7.9602 23.0729 
RMSE 0.3221 10.6305 8.9672 2.8214 4.8034 
R2 0.9992 0.8175 0.8609 0.9761 0.9548 
R 0.9996 0.9042 0.9279 0.9879 0.9772 
MAPE 0.0059 0.1848 0.1329 0.0496 0.0563 
Chi-square 0.4273 305.2465 214.3732 24.7447 68.0734 
SEP 0.6893 20.1189 16.9712 5.3397 9.0909 

The data obtained from Offisong [28] was used as the basis for prediction and comparison. 
The data obtained ANN had the least MSE and RMSE (0.1038 and 0.0059). followed by Motiee, 
Towler and Makhtab, FA and Hammerschmidt in that order. The R values indicate the rela-
tionship between the experimental and predicted data. ANN had the R and R2 value closest to 
1 (0.99959 and 0.99918 respectively) followed by Motiee, Towler and Makhtab, Ham-
merschmidt and FA in that order. The MAPE and SEP measure the deviation from the actual 
data. As seen in Table 5 ANN had the least divergence from experimental values with a MAPE 
and SEP of 0.005944 and 0.689312 respectively compared to the MAPE and SEP of the corre-
lations and FA. ANN low Chi-square values of 0.42733 in comparison to FA and the correlation 
confirmed ANN had the best performance in prediction of gas hydrate formation temperature, 
while FA did not perform as well as ANN nor the correlations. 
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Figure 8. Comparison of experimental data and results of FA model 

 
Figure 9. Comparison of experimental data and results of Hammerschmidt correlation 

 
Figure 1. Comparison of experimental data and results of Motiee correlation 

This work provide a confirmation to the reports made by [18, 28-29] that ANN performed 
better than other software and correlation in the prediction of gas hydrate formation tem-
perature. 
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Figure 11. Comparison of experimental data and results of Towler and Mokhatah correlation 

4. Conclusion and recommendation 

For the prediction of gas hydrate formation temperature, the ANN model developed in this 
work used Bayesian regularization algorithm which obtained the best model and performed 
better than FA, Hammerschmidt correlation, Motiee correlation and Towler and Mokhatab’s 
correlations. ANN performed better in comparison to FA in the prediction based on the statis-
tical analysis, as ANN have better R, R2, MSE, RMSE, MAPE, Chi-square and SEP values. ANN 
MSE of 0.10376 and R2 of 0.99918 compared to FA MSE and R2 value of 113.00670 and 0.8175 
respectively reaffirmed the conclusion drawn by [18, 28-29]  that ANN performed better in hy-
drate temperature prediction than any model and correlation known and available. 

Both ANN and FA are very good and useful tools in predicting hydrate formation tempera-
tures, the comparison of their performance based on their mean square error and regression 
value to correlations used in the industry was very good. To obtain very precise prediction, 
ANN is recommended. Subject to further research, the equation used for the FA can be im-
proved upon and the use of much more datasets can help achieve better model and algorithm 
performance. 
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