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Abstract 

The phenomenon of gas hydrate formation in different oil and gas industries in downstream processes 
hinders or decreases productions. Artificial intelligence techniques such as neural network may 

efficiently help in solving gas hydrate formation issues and also avoid extra costs by predicting hydrate 

formation conditions. In this study, a hybrid multilayer perceptron neural network with genetic algorithm 
has been used to model the conditions of gas hydrate formation. The variables of natural gas pressure, 

specific density, and mass percentage of methanol in aqueous solution are three input parameters of 

the neural network, and the output parameter of the neural network is the gas hydrate formation 
temperature. The optimal number of hidden layer neurons was calculated as 7 using the genetic algo-

rithm. The total number of data pieces used in modeling was 156, 70% of which is  for training, 15% 

for monitoring, and the rest for network testing. The small numerical error values obtained for the test 
data (0.29) and the high correlation coefficient (close to 1) for the test data indicate that the hybrid 

neural network using a genetic algorithm successfully performs in predicting hydrate formation 

temperature. At the end of the modeling, a closed formula has been presented to calculate the gas 
hydrate formation temperature. 

Keywords: Hydrate formation temperature, Methanol inhibitor, Modeling, Hybrid neural network, Genetic 

algorithm. 

 

1. Introduction  

Gas hydrate is a combination of light gases such as methane, ethane or carbon dioxide 
(CO2), which, under a certain temperature and pressure, combine with water molecules to form 
ice-like substances. Gas hydrates are ice-like solid crystalline compounds that are composed 
of water molecules as hosts and gas molecules as guests at low temperatures (close to zero 
degree) or at high pressures (usually > 2.6 MPa). Many gas components such as methane, 

ethane, and carbon dioxide can be encapsulated by water molecules through hydrogen bond-
ing and form hydrates under appropriate conditions. 

Hydrate crystals have a complex 3D structure in which the water molecules form cages in 
which the guest molecules are trapped. The stability of the guest molecule is attributed to the 
vander Waals forces. There is no bond between the guest and host molecules. In the process 

of hydrate formation, no bond is formed or broken, but only phase change occurs. The guest 
molecules are free to rotate and move within the cages made of host molecules.  

Low temperature, high pressure, and hydrate components (methane, ethane, and carbon 
dioxide) contribute to the hydrate formation. To avoid hydrate formation, it is sufficient to 
remove only one of the above three conditions. Typically, hydrate components cannot be re-
moved from the mixture. In the case of natural gas, the hydrate components are the desirable 
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products. Therefore, hydrates are counteracted through the two remaining factors, e.g., the 
combination of temperature and pressure as well as water content. Other factors forming the 
hydrate include perturbation and turbulence, increased nucleation sites, and free water [1]. 
Another way of preventing hydrate formation is to inject inhibitors into the system. Inhibitors 
are substances making the hydrate form at a certain pressure at a lower temperature. Alco-

hols, glycols, and salts are examples of these substances. 
The methods cited above change the thermodynamic equilibrium of hydrate formation and 

are known as thermodynamic inhibitory methods. Because in these methods, the system be-
comes thermodynamically unstable by changing the composition, temperature, or operating 
pressure, and hydrate formation will not occur as long as the system is unstable. Another way 

to prevent the formation of hydrates is by using kinetic inhibitors. These materials allow the 
system to remain stable under thermodynamic conditions but prevent the growth of hydrate 
crystals. Their mechanism is to block the fine particles of the hydrate crystals, thereby pre-
vening their further growth or the hydrate crystal bonding. Inhibitors are widely used in the 
oil and gas industry to prevent gas hydrate formation. In this paper, methanol has been used 
as thermodynamic inhibitor. Artificial intelligence tools such as genetic algorithm and neural 

network are new computational methods for machine learning, displaying knowledge, and 
applying knowledge to predict the output responses of complex systems. The main idea be-
yond such tools is partly inspired by the performance of the biological nervous system for data 
processing and information for learning and knowledge creation. A key element of this idea is 
to create new structures for the information processing system. This system consists of a large 

number of highly interconnected processing elements called neurons that work together to 
solve a problem and transmit information through synapses (electromagnetic communica-
tions) [2-4]. 

In this study, we try to predict the conditions of gas hydrate formation in a gas pipeline by 
using artificial intelligence tool via MATLAB software and obtain the optimal conditions. The 

gas pressure, the mass percentage of methanol in the solution (as inhibitor), the gas density, 
and the constituents of the gas are all input variables that affect the output variable, e.g. the 
temperature of gas hydrate formation. 

2. Computational procedures and programme 

Traditional modeling methods based on mass, energy, and momentum balances require 

precise process data [5-6]. There are time-consuming analytical methods which have a consid-
erable error when there is insufficient knowledge of the processes. On the other hand, com-
putational intelligence-based methods do not require a precise description of the process 
mechanism [5, 7-8] and can simulate the system output only using empirical (laboratory) data 
with reasonable accuracy. These models are mainly applied when the complexities of the pro-

cess prevent the analytical modeling of them. 
Artificial neural networks, as a type of computational intelligence-based models, have been 

inspired by the parallel structure of neural computing in the human brain. The overall structure 
of the artificial neural network model is determined by an algorithm or by an operator. The 
network parameters are adjusted by learning algorithms and experimental data to minimize 
the output error. Data-driven models such as neural networks estimate the variable based on 

the input and output conditions of the systems or, in other words, initial and final conditions. 
In this study, a multilayer perceptron neural network has been used to model the gas hydrate 
formation conditions. The variables of natural gas pressure, specific density, and mass per-
centage of methanol in aqueous solution are three input parameters of the neural network, 
and output parameter of the neural network is the temperature of gas hydrate formation. 

After creating the neural network structure, the network should be trained by a robust and 
reliable database. In fact, relevant laboratory data are used for training, validation, and test-
ing. Here, a database of empirical data related to the process of gas hydrate formation in the 
presence of methanol inhibitors will be used. In Figure. 1, the input and output variables of 
modeling the formation temperature of gas hydrate using an artificial neural network are 

shown. 
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Figure 1. Schematic view of modeling input and output data in this study 

In this study, the Levenberg-Marquardt algorithm has been used to train the network [7]. 
Verifying the capability and reliability of the artificial neural network in process simulation will 
be examined using test data. A review of the literature indicates that few studies have been 
performed on the artificial neural networks application for gas hydrate modeling. 

In this study, the data obtained from the Hasheminejad Refinery Gas Transmission Line 

were used for modeling in the presence of methanol inhibitors with different mass percenta-
ges. The data were divided randomly into three categories: training, validation, and testing. 
In the training phase, the free parameters of the network (weights and biases) approach their 
optimal values. The genetic algorithm is used to find the optimal structure of the neural net-
work. The results, which include a comparison of both real and modeling data, are presented 
at the end. Error value and regression coefficient are also calculated for modeling and real 

data. Also, the optimal network structure has been extracted by the genetic algorithm. 

2.1. Topology of the neural network used  

Neural networks are data-driven models that can determine the relationship between inde-
pendent and dependent data in a physical system by a network of interconnected nodes. 
Figure 2 shows the topology of 1-7-3 for the neural network. The structure shown has 3 

neurons in the input layer (temperature, pressure, and percentage of methanol), 7 neurons 
in the hidden layer, and 1 neuron in the output layer (gas hydrate formation temperature). 

2.2. Input and output data 

 

 

Figure 2. The neural network structure used in this 
study with three neurons in the input layer (pressure, 

specific density, molar percentage) and one neuron in 

the output layer 

The amount of input data is funda-
mental to network efficiency. If the 

training models do not provide all the 
components of the problem which have 
to be solved by the network, the net-
work will not be trained well, and the 
network performance will be very poor 

for the test data. The only general for-
mula which can be mentioned is to use 
a large amount of input data that de-
fines the problem properly. Another as-
pect that must be kept in mind is the 
relationship between the total input data 

and the number of network weights. If 
the number of input samples is less than 
the network weights, one can expect to 
assign a single weight to each sample.  
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This process reduces network generalization. The number of training samples should be at 
least twice the weight of the network. 

In Figure 3, the schematic display of the type of input and output data of the network is 
presented along with their upper and lower bounds. Input and output data values were also 
obtained from the Hashemitejad gas refinery pipeline. The number of samples used in this 

study was 156. 

 

Figure 3. Input and output data (Hasheminejad Gas Refinery in Mashhad) for creating a data -oriented 
model and their upper and lower bounds using artificial intelligence techniques  

2.3. Data segmentation 

In this study, according to neural network theory, the data are randomly divided into three 
categories of training, monitoring and testing network, which includes 70%, 15% and 15% of 

the total data, respectively. 

2.4. The governing equations 

The connection between the nodes of the input and the hidden layer is made by the edges. 
Each of these edges has a specific weight. The number of edges between the input and the 
hidden layer is (7 × 3), so there are 21 weights that are placed in IW weight matrix, respec-

tively (according to Equation 1). 

𝐼𝑊𝑆×𝑅 = [

𝐼𝑊11 𝐼𝑊12 𝐼𝑊13

𝐼𝑊21 𝐼𝑊22 𝐼𝑊23

. . . . . . 𝐼𝑊..

𝐼𝑊𝑆1 𝐼𝑊𝑆2 𝐼𝑊𝑆3

]

7×3

            (1) 

Matrix 1 is known as the input layer weight matrix. Matrix 2 is the weight matrix of the hidden 

layer. The entries of both matrices are all unknown and obtained during the network training 
process. 
𝐼𝑊1×𝑆 = [𝐼𝑊11 𝐼𝑊12 . . . 𝐼𝑊17]1×7           (2) 

In following, the input layer bias matrix (𝑏1) and the hidden layer bias matrix (𝑏2) has been 

presented. 

𝑏1 =

[
 
 
 
𝑏1

1

𝑏2
1

⋮
𝑏𝑠

1]
 
 
 

7×1

 and 𝑏2 = [𝑏1
2]1×1             (3) 

Figure 4 illustrates the relationship between the input and output layers using the IW and 
LW weight matrices as well as 𝑏1and 𝑏2bias matrices. Also, the transfer functions between 
layers (𝑓1and𝑓2) are shown in Figure 4. 𝑇𝑁𝑁is the output variable of the neural network (hydrate 

formation temperature). In this figure, the neural network performance is simply illustrated 
by the following equations. 
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Figure 4. Relationship between input and output data using weight matrix and bias among layers 

Matrix 4 shows the neural network input data matrix. As seen, this matrix has three inputs, 
including gas pipeline pressure, gas specific weight, and methanol weight percentage in aqueous 
solution. 

𝑃𝑅 = [
𝑝
𝑠𝑔
𝑤

]
3×1

                   (4) 

After definitions of the different matrices, the method of calculating the network output 
using the inputs is shown. 
𝜂1 = 𝐼𝑊 × 𝑃𝑅 + 𝑏1                 (5) 
𝑎1 = 𝑓1(𝜂1)                   (6) 

𝜂2 = 𝐿𝑊 × 𝑎1+ 𝑏2                  (7) 
𝑇𝑁𝑁 = 𝑓2(𝜂2)                   (8) 

2.5. Transfer functions 

The transfer function is a linear or nonlinear function, also called a transformation and 
activation function. Like all mathematical functions, the transfer function takes one input (x) 
and yields an output. In this study, the hyperbolic tangent function and linear function are 
used. 

𝑓(𝑥) =
𝑒𝑥−𝑒−𝑥

𝑒𝑥+𝑒−𝑥
   Hyperbolic tangent         (9) 

𝑓(𝑥) = 𝑥    Linear              (10) 

2.6. Neural network training 

As seen in Figure 5, all the parameters are known except for the weight and bias matrix 
values that are unknown. To obtain these unknowns, the neural network needs to be trained 
with the help of laboratory data. During training, the weight and bias values change untill the 
output (𝑇𝑁𝑁) and real output of the lab (𝑇Real) match. 

 
Figure 5. How the neural network works at a glance 
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2.7. Hybridizing the network with genetic algorithm 

Using the trial and error method, one can find the proper size of the network; but in this 

study, the genetic algorithm has been used to find the optimal structure. In other words, the 
optimal number of hidden layer neurons will be obtained by the genetic algorithm. It is necessary 
to note that the objective function of this problem is the mean square error, and the inde-
pendent variables are the number of neurons in the hidden layer. In the following, results 
have been presented for the optimal state. At the optimal state, there are 7 neurons in the 
hidden layer of the neural network. 

3. Results and discussion 

In this section, a comparison has been made between the experimental and the modeling 
results. The data (156 pieces) have been randomly divided into three categories of training, 
validation, and testing. The results have been summarized for each of these three categories 

as well as for all of them. Figure 6 presents the comparison of results for all data altogether 
with the corresponding error. 

 
Figure 6. Total data (comparing neural network prediction values and experimental data) including 

training, validation, and test data along with their error 

As can be seen, the error of prediction using the neural network is mainly in the range of 
+1 to -1°C. In the following figures, the diagram of comparison of experimental data and 
modeling is given separately for all three categories. It is obvious that the results related to 
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the comparison of the test data indicate the accuracy and actual performance of modeling 
using the neural network. 

The neural network complements the learning process using the training data and assesses 
the quality of learning of the network by validation. Finally, the network can be actually tested 
using the test data to evaluate its accuracy in prediction. As can be seen, the neural network 

performs very successfully in the test phase and is able to predict the experimental values 
with high accuracy, and the prediction error has been small (Figure 7). 

 
b) 

 
a) 

 

 
 

Figure 7. Comparison of the results of neural network modeling and real (experimental) results for  
(a) training data; b) monitoring data, and c) test data 

Table 1. Mean squared error and correlation coefficient for all three categories of training, validation 
and testing and total data 

 Training (70%) Validation (15%) Testing (15%) Total (100%) 
Mean squared error (MSE) 0.24 0.42 0.29 0.27 

Regression coefficient 0.996 0.998 0.995 0.996 
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As expected, the low error value and the high correlation coefficient indicate the proper 
performance of the neural network in predicting the hydrate formation temperature. In the 
following curve, the real hydrate formation temperature and temperature obtained from the 
modeling has been indicated. Ideally, when the network error is zero, all points are placed on 
the line. In practice, there is a small error value that causes the points to be scattered above 

and below this line. The equation of the best trend line from the points of this diagram, along 
with its correlation coefficient, is given below. 
𝑇𝑁𝑁 = 0.99× 𝑇Real + 0.186𝑅 = 0.996           (11) 

 

Figure 8. Regression diagram of all real data and 
modeling data (neural network) 

If there is a difference between the per-
formance of the network in the training and 
testing phase, we realize that network train-
ing has not been performed well. According 

to Table 1, the small error of the MSE for the 
test data (0.29) and their high correlation 
coefficient (close to 1) indicate successful 
neural network prediction. Figure 8 shows 
the regression diagram of the total experi-

mental and modeling data.  
End-of-training is based on the mean 

squared error control according to criteria. 
The MSE curve is called as a function of the 
iteration of the training algorithm. Another 

method is to monitor the MSE of the test and 
validation data. Training should stop when 
test data error begins to increase. At this 
point, the most generalization occurs.  

To apply this method, the network must first be trained several times. Then, the weights 

should be fixed, and the network is evaluated with test data. Then, it is time to go back to the 
training dataset and continue training. This method is slightly overwhelming because, for each 
iteration of the training, it is necessary to calculate the performance of the network test data. 

 

Figure 9. Diagram of the mean squared error 
(MSE) in different iterations of the training pro-

cess 

In Figure 9, the mean squared error dur-
ing the training process has been shown. It 

is obvious that by increasing iteration, the 
error value is decreasing for all three cate-
gories. As the algorithm progresses at each 
iteration step, the mean squared error is cal-
culated for the validation data.  When the 

validation error is reduced, the algorithm will 
not stop, and the training will continue. 
Training is stopped when the validation error 
is not decreasing in 6 consecutive iterations. 
Increasing the number of iterations (more 
than 6) drives the network to overfit and in-

creases test data error and reduces network 
generalization. 
 
 

 

Finally, the point where the verification error has been minimized is considered as the out-
put of the problem. In Figure 9, the validation error decreases before iteration No. 11 and 
then increases, while the training data error continues to decrease. From iteration No. 11 to 
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No. 17 (6 consecutive repetitions), the validation error is ascending, so the training algorithm 
terminates its operation, and the iteration No. 11 is considered as output. We should note that 
the algorithm calculates the mean squared error as follows:  

𝑀𝑆𝐸 = ∑
(𝑇𝑁𝑁−𝑇Real)

2

𝑁𝑒

𝑛
𝑖=1                (12) 

In the above equation, 𝑇𝑁𝑁 is the hydrate formation temperature predicted using the neural 

network,  𝑇Realis the real hydrate formation temperature, and 𝑁𝑒is the total number of samples. 
As indicated, Figure 10 shows the structure of the network used in which the input layer takes 
3 types of data and predicts the output layer of data. According to the figure below, the 

number of hidden layer neurons is 7, the weight matrix and bias, as well as the activation 
function, are shown. As shown schematically, the activation function of the first layer is the 
hyperbolic tangent, and the second activation function is linear. 

 

Figure 10. The neural network structure used in this study 

4. Conclusion 

An exact mathematical model has been presented based on the theory of artificial intelli-
gence and neural network. An accurate model was developed by programming the neural 
network algorithm and feeding it by the laboratory data. The high correlation coefficient and 

low prediction error for the test data indicate that the obtained mathematical model can well 
predict the gas hydrate formation conditions. The present model predicts accurate results and 
is reliable in the temperature range from 268 to 301 K, the pressure between 116- 3500 psi, 
inhibition percentage between 5% to 15%, and specific weight between 0.530 to 0.995. The 
present model has better prediction accuracy than the existing experimental and quasi-exper-

imental models with the mean absolute error percentage of MSE = 0.29. 
The multilayer perceptron neural network has been used to model the gas hydrate for-

mation conditions. The variables of natural gas pressure, specific density, the mass percentage 
of methanol in aqueous solution are the three input  parameters of the neural network. The 
output parameter of the neural network is the gas hydrate formation temperature. After cre-

ating the neural network structure by a powerful and reliable database, the network has been 
trained. The results show that the hybrid artificial neural network can well predict the temper-
ature of gas hydrate formation with high accuracy. The optimal number of hidden layer neu-
rons (7 neurons) has been calculated by the genetic algorithm. The total number of data 
pieces used in the modeling is 156, 70% of which has been allocated to training, 15% for 

monitoring, and the rest for network testing. The numerical error values (MSE) for training, 
validation, and test data are 0.24, 0.42, and 0.29, respectively. Also, correlation coefficients 
for training, validation, and test data were 0.996, 0.998 and 0.995, respectively. As expected, 
the MSE error for the training data is minimum, and the regression coefficient is maximum. 
Due to the large size of the variable of the hydrate formation temperature, this error value is 

very small, and the modeling accuracy is acceptable. The small MSE error (0.29) and the high 
correlation coefficient (approximately close to 1) for the test data indicate that the neural 
network is successful in predicting the hydrate formation temperature. 

In the following, the main relation of calculating the hydrate formation temperature has 
been presented based on the input variables. As you can see below, we can obtain the hydrate 
formation temperature as follows:  
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Multiply the weight matrix by the input matrix, add it to the first layer bias matrix, and then 
apply the hyperbolic tangent function to it, and multiply it by the second layer weight matrix, 
and finally, add a constant value. 
𝑇𝑁𝑁 = [−0.886 +0.076 +0.326 −0.0096 −0.0087 1.501 −0.0105] 

× 𝑡𝑎𝑛ℎ

(

 
 
 
 

[
 
 
 
 
 
 
−0.210 −0.292 −0.067
+2.718 0.107 +4.491
+0.206 −0.034 −2.579
+3.429 −1.735 +4.147
−3.139 +1.413 −1.693
+2.401 +0.058 +0.074
+2.441 +3.700 +2.797]

 
 
 
 
 
 

)

 
 
 
 

×[
𝑃
𝛾𝑔
𝑤

] +

[
 
 
 
 
 
 
−0.216
+4.533
−0.094
+0.436
−0.958
+2.831
+1.691]

 
 
 
 
 
 

− 1.3654   (14) 
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