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Abstract 
Electrical Submersible Pump (ESP) is one of the most common artificial-lift methods in oil fields 
worldwide, due to its large volume capacity and wide range of sizes. Despite the high cost of an ESP 
system and its maintenance, ensuring its reliability is considered a vital goal. Simply, the longer the 
ESP system run life, the more reliable and profitable it is. In this paper, we will build a model that 
predicts the run life of ESP systems in the Egyptian Western Desert by Machine Learning (ML). ML has 
been used to build statistical models for complex systems. We will discuss various ML algorithms, which 
are widely used by data scientists.The data used to build this model were collected from several ESPs 
installed in Egyptian Western Deserts oil fields. The data cover every aspect of the system to describe 
the ESPs and operating conditions precisely. This paper clarifies that the ESP system complexity 
involves complex modeling algorithms to achieve the required results. The model succeeded in 
predicting ESP systems' run life. The main reasons beyond these systems' failure are electrical ones. 
Several ML algorithms have been used to evaluate the collected data to select the most informative 
data to build the model. The developed model succeeded in predicting the run life with high accuracy. 
It could be also used to evaluate designs, equipment choice, and operating parameters. It is an 
economic choice to enhance overall ESP operations. 
Keywords: Electrical submersible pump; Machine learning; Failure prediction; Run life; Neural network; 
Random forest. 

1. Introduction

Electrical Submersible Pump (ESP) is an artificial-lift method used in oil fields worldwide for
its large production volumes, as it is responsible for 60% of oil global production [1]. This 
contribution granted ESP its significance in the oil industry. ESP system contains downhole 
and surface components that are all connected together. Some of them are electrical compo-
nents such as electrical motors, cables, switchboards, and transformers. Others are mechan-
ical such as multi-stage centrifugal pumps, and gas separators [2].  

These different types of components and their interactions are the reasons beyond the ESP 
system complexity. This complexity makes it harder for us to examine and predict its perfor-
mance. Thus, ESP failures appear random and unpredictable [1].  

The ESP failure can be simply described as losing  its ability to lift fluid to the surface [1]. 
The failure can be either mechanical or electrical depending on the failed component of the 
system. The most common type of failure is found to be electrical [2]. Figure 1 illustrates 
several failures related to various ESP components. In Figure 2, the percentage of each failure 
type in one field is listed, showing that 48% of the failures are electrical. 

One of the main drawbacks of the ESP system is the high cost of intervention. When the 
system fails, it requires a workover rig regardless of the failure cause. During the workover 
time, the oil production loss is significant. Annually, the production loss due to intervention is 
about $3 million, while the workover operation costs around $1 million [3].  

619



Petroleum and Coal 

                          Pet Coal (2022); 64(3): 619-631 
ISSN 1337-7027 an open access journal 

It is noteworthy that these costs are lower in the Egyptian Western Desert. The intervention 
cost is about $300 thousand, while production loss is estimated to be around $320 thousand. 
These numbers are calculated and collected from drilling reports, service tickets, and workover 
rates in the fields subject to the study. 

 
Figure 1. ESP components related failures [2] 

 
Figure 2. ESP failures in one field [1] 

Due to these high costs, oil operators seek the most reliable ESP system. The reliability of 
the ESP system can be evaluated by defining two parameters:  
• Mean time to failure (MTTF): The period of time that the system operates before failing. 
• Mean time to repair (MTTR): The average period of time needed to repair the system and 

put it back in service. 
Thus, the reliability of the system is defined as in equation 1 [4]:  
𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 =  𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀

𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀+𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀
              (1) 

Therefore, increasing the run life of the system increases its reliability. Consequently, pre-
diction of ESP run life is significant to justify the economic costs and plan maintenance oper-
ations. It also helps in enhancing ESP design and operating conditions to ensure higher relia-
bility [4].  

To predict ESP run life, it is necessary to build a model that describes the system and its 
components relying on the available data. Different types of models could be used. The phys-
ical models contain mathematical equations that describe the system’s behavior. However, 
the complexity of ESP systems makes it extremely difficult to build such models.  

Another type is data-driven models. These models utilize historical data to predict the future 
through statistical algorithms. This model is the most suitable choice, since it gets enhanced 
as a result of collecting more data, and it can handle different types of information. The Data-
driven model adheres to the term machine learning (ML) and both describe the same concept [1].  

ML can be simply defined as a method of solving a specific problem by collecting a data set 
that contains the information necessary to build a statistical model. This model yields certain 
output or helps somehow with solving the problem in hand [5].  

ML can be classified into two main types: 
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• Supervised learning: It is used to predict a certain outcome from the input data. The 
data set in this type takes the form of pairs (input/outcome), where the outcome is already 
known. The algorithms find a way to produce the outcome from the input data, then use the 
result to predict the outcome for new data that algorithms have never seen before. Supervised 
learning can handle regression and classification problems. In regression, the outcome is a 
continuous number, whereas in classification the outcomes are pre-defined groups or a list of 
possibilities.  
• Unsupervised learning: This differs from the other type in that the outcome is unknown. 
It is used in transforming data set to another form easier for humans, or other ML algorithms 
to deal with. It is also used to classify the data set into groups with similar items. This process 
is called clustering [6]. 

As this paper's goal is to predict the run life of an ESP system, supervised learning algo-
rithms have been used to build the model. 

2. Literature review  

The applications of ML in real life are numerous. Some examples are: identifying people 
from their pictures at airports and surveillance systems, determining whether a tumor is be-
nign from medical images, and identifying online posts related to certain topics [6]. In the oil 
industry, ML has been used in several applications recently. Here, we will represent a few 
examples of these applications:  
• The use of text mining algorithms to extract essential data from drilling reports. These 
reports usually come in an unstructured format, text mining works on these reports and ex-
tracts qualitative and quantitative data, and transforms them into a structured format that 
can be used by others and make it easier to find useful data and information [7]. 
• ML was used to predict the failure of rod pump systems using supervised learning algo-
rithms. The problem was formulated as a classification problem. The results showed promising 
results in failure prediction [8].  
• In the reservoir characterization field, ML was used to predict the permeability and porosity 
of the reservoir. This technique achieved a success rate of 98% and 81% in permeability and 
porosity prediction respectively [9]. 
•  ML supervised learning algorithms were used to obtain the bottom hole pressure in ESP 
wells in real-time. The study used a Neural Network algorithm to tune the model. The model 
showed promising results and could replace expensive downhole gauges in the future [10].  

In this paper, a model is built to predict ESP system run life using several algorithms of 
regression supervised learning. Then, each algorithm will be evaluated to select the most 
accurate one. 

3. Methodology 

Building a successful ML model involves several steps to ensure that the model represents 
the faced problem and predicts future never-seen data with an acceptable range of accuracy.  

The Steps of building a model is summarized in Figure 3 as follows:  

 
Figure 3. ML model building steps 
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3.1. Data gathering 

The First step is collecting data that describe the problem. Due to the complexity of the 
ESP system, as stated before, all available data are collected to cover each aspect of the 
system. The data are divided into three groups: design data, fluid characteristics data, and 
electrical data. 

The ESP systems were installed in Qarun, East Baharia, and Karama fields in the Egyptian 
Western Desert. The data were obtained from drilling reports, well tests, and ESP designs. 
Table 1 shows the types of data collected for each system.  

Table 1. Data collected for ESP systems 

Data type Definition 
Pump depth The setting depth of the ESP pump; Unit: ft 

Phase to phase resistance The resistance measurement of the electrical cable between each two 
conductors; Unit: Ω 

Phase to Ground resistance The resistance measurement of the electrical cable between each con-
ductor and the ground (earth); Unit: MΩ 

Motor horsepower The power of the electrical motor;Unit: hp 

Motor Load The running current in AMP is divided by the nameplate current in AMP 
Unit: percentage 

Intake Pressure (PI) Intake pressure of the pump calculated from the fluid level above the 
pump; Unit: psi 

Discharge Pressure (PD) The discharge pressure of the pump calculated from pump depth and 
wellhead pressure; Unit: psi 

Motor number The number of motors installed; Unit: integer number 

Motor grade The classification of the motor. A class for new motor 
B class for re-run motor 

Seal number The number of motor seals installed; Unit: integer number 

Seal grade The classification of the motor seal. A class for new seal 
B class for re-run seal 

Separator number The number of gas separators installed; Unit: integer number 

Separator grade The classification of the gas separator. A class for new separator 
B class for re-run separator 

Pump number The number of pump sections installed; Unit: integer number 

Pump grade The classification of the pump sections; A class for new separator 
B class for re-run separator 

Stages number Total number of stages in the pump sections 
Unit: integer number 

Relative rate 

The actual fluid rate related to the pump curve as following: 
Relative rate = 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 𝑟𝑟𝐴𝐴𝐴𝐴𝑟𝑟−𝑀𝑀𝑀𝑀𝑀𝑀 𝑟𝑟𝐴𝐴𝐴𝐴𝑟𝑟 𝑜𝑜𝑜𝑜 𝐴𝐴ℎ𝑟𝑟 𝑝𝑝𝐴𝐴𝑝𝑝𝑝𝑝 

𝑀𝑀𝐴𝐴𝑀𝑀 𝑟𝑟𝐴𝐴𝐴𝐴𝑟𝑟 𝑜𝑜𝑜𝑜 𝐴𝐴ℎ𝑟𝑟 𝑝𝑝𝐴𝐴𝑝𝑝𝑝𝑝−𝑀𝑀𝑀𝑀𝑀𝑀 𝑟𝑟𝐴𝐴𝐴𝐴𝑟𝑟 𝑜𝑜𝑜𝑜 𝐴𝐴ℎ𝑟𝑟 𝑝𝑝𝐴𝐴𝑝𝑝𝑝𝑝 
 

Unit: positive or negative number 
Negative means down thrust 
Positive and >1 means upthrust 
Positive and <1 means within the operating range 

Pump OD The Pump outer diameter; Unit: inch 
Tubing ID Tubing inner diameter; Unit: inch 

Flat cable grade The classification of the flat cable; A class for new flat cable 
B class for re-run flat cable 

Round cable grade The classification of the round cable; A class for new round cable 
B class for re-run round cable 

GOR The gas-Oil ratio from PVT analysis; Unit: SCF/STB. 
Salinity The Salinity of produced water; Unit: ppm 
API API gravity of the oil produced 
Power source The power source used in running the well; Either generator or OHTL 

363 ESP systems data were collected. Each system has 31 data points, from now on each 
data point will be called a feature. Features in ML have the notation of “X”, and the target, in 
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this case, run life, has the notation of “y”. So, for the first ESP system, the run life is denoted 
“y1” and has the features: X1, X2, …., X31. Our data is represented as a matrix with a dimension 
of 363*32. Representing data sets as matrices is the common practice in ML [5].  

Table 2 shows a summary of the collected data; maximum, minimum, and average value 
for each feature.  

Table 2. Summary of collected data 

Feature Min value Max. value Average Unit 
Run life  62 2034 671 day 
Pump depth 3663 10288 5895 ft 
PH-PH IR 2.2 10.6 5 Ω 
PH-GR IR 50 2000 468 MΩ 
Motor HP 43 469 125 hp 
Motor load 0.3647 1 1 - 
PI 18 3656 662 Psi 
PD 1747 4730 2860 Psi 
Motor number 1 2 1 - 
Motor Grade  B A - - 
Seal number 1 2 1 - 
Seal grade B A - - 
Separator number 0 2 0 - 
Separator grade B A - - 
Pump section number 1 4 2 - 
Pump grade B A - - 
Pump stages number 134 861 308 - 
Relative rate -0.8952 2.6206 1 - 
Pump OD 4 5.7 5 in. 
Tubing ID 2.19 2.991 2 in. 
Flat cable grade B A - - 
Round cable grade B A - - 
GOR 10 450 76 SCF/STB 
Salinity 2385 157300 32435 ppm 
API 20 43 32 ˚API 
Power source Generator OHTL - - 

3.2. Tools and platform 

Several programming languages offer their platforms or tools to apply ML algorithms, pro-
cess raw data, and evaluate different models. However, the Python language has become one 
of the most favorable languages for data scientists and ML practitioners. It is a free open 
source, a general-purpose language with the advantages of ease of use and having hundreds 
of libraries for data processing, visualization, statistics, and many more.  

Scikit-Learn is an open-source project that contains different ML algorithms, data pro-
cessing tools, visualization tools, and evaluation matrices. It is the most used ML python li-
brary among the ML community. It contains also other necessary libraries for mathematical 
and matrices operations for ML projects.  

Keras is another ML Python library specialized in neural networks and deep learning. It is 
the most common tool used in building different types of neural networks. It can be also used 
with Scikit-Learn to make use of its evaluation and processing tools. 
This paper will rely on these libraries to process the data, build a model and evaluate it. 

3.3. Data processing 

The process of transforming the raw data into a form that can be used by ML algorithms is 
called “Feature Engineering”. It is an important step as it affects the outcome of the model 
significantly. It also requires a lot of effort and domain knowledge to be done probably [5]. 
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Most algorithms work only with numerical values. Thus, all categorical data must be trans-
formed into a binary representation. For example, the pump motor is either new “Condition-
A” or used “Condition-B”. The representation for these data will be:  
Condition-A = [1,0] 
Condition-B = [0,1] 

All these transformations were done manually to ensure the proper representation of data. 
However, Scikit-Learn offers valuable tools that can be used for these transformations. 

There are different features and each feature has a different range. In ML, the best practice 
suggests that all features should have the same range. To transform all features to the same 
range, “Standardization” is used. It is the process in which features are rescaled to have a 
mean of 0 and a standard deviation of 1 as in equation 2 [5]:  
𝑋𝑋𝑆𝑆𝐴𝐴𝐴𝐴𝑀𝑀𝑆𝑆 =  𝑋𝑋−𝑝𝑝𝑟𝑟𝐴𝐴𝑀𝑀(𝑋𝑋)

𝑆𝑆𝐴𝐴𝐴𝐴𝑀𝑀𝑆𝑆𝐴𝐴𝑟𝑟𝑆𝑆 𝐷𝐷𝑟𝑟𝐷𝐷𝑀𝑀𝐴𝐴𝐴𝐴𝑀𝑀𝑜𝑜𝑀𝑀 (𝑋𝑋)
               (2) 

3.4. Features selection 

One can assume that adding more features means more information provided to the algo-
rithm and a better model obtained. Nonetheless, this is not the case in ML practice. In some 
cases, some features may have the same information, which are considered repetitive. A large 
number of features create a complex model and cause overfitting. Therefore, it is considered 
good practice to reduce the number of features to the most important ones [6].  

Scikit-Learn offers several methods to choose the best features. This paper depended on 
three approaches: 
• Recursively Eliminating Features (REF) 
• Feature selection based on model (linear models) 
• Removing irrelevant features using the “Kbest algorithm” [11].  

After running these three methods and comparing the selected features by each method, 
the most frequent features are selected to be used in the model.  

The chosen features are Phase to ground resistance, motor load, PI, separator number, 
pump grade, relative rate, GOR, salinity, and API.  

3.5. Splitting the dataset 

The dataset is now ready to be used in regression algorithms. First, the data set is split into 
two sets: a training set and a test set. The training set is a portion of the dataset used to build 
our model. The test set is a much smaller portion used to evaluate the model [5]. ML practice 
usually suggests using another set called validation set that is used to tune the model hy-
perparameters before evaluating it one last time on the test set. However, ML datasets usually 
have thousands or even millions of data points, which are not the case neither in this problem 
nor in most other oil industry problems. Therefore, only two sets; training and test sets, are 
used. The same approach was used by Devon Energey in several models built for failure pre-
diction [12]. The test set was chosen to be 20% of the whole data set. 

3.6. Regression algorithms 

Now, the data set will be run through different regression algorithms to evaluate their per-
formance, starting with the simplest algorithms until reaching the more complex neural net-
work algorithm. The used algorithms are the most common methods used in regression in 
Scikit-Learn library. Some are chosen to represent simple methods as linear regression; others 
are chosen for their high accuracy in complex problems such as Neural Network and Random 
Forests. The paper focuses on some methods, whereas some other methods could be used in 
other studies.  
Linear Regression:  
It is a commonly used type of ML that uses a linear function of the input features as shown in 
equation 3 [5]:  
𝑅𝑅′ = 𝑤𝑤[0] ∗ 𝑥𝑥[0] + 𝑤𝑤[1] ∗ 𝑥𝑥[1] + ⋯… + 𝑤𝑤[𝑝𝑝] ∗ 𝑥𝑥[𝑝𝑝] + 𝑅𝑅     (3) 
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where x [0] to x[p] are the features. The algorithm solves for the weight w[p] for each feature 
and b. In the case of one feature, the model is in one dimension. For more features, the model 
becomes a hyper plane rather than a line. 

 
Figure 4. Linear regression in one dimension [5] 
 

There are several algorithms for linear 
regression. The Lasso method is used 
where the weight of each feature is near 
or equal to zero to avoid overfitting and 
achieve regularization.  
The simple linear regression model is 
shown in Figure 4. 

Decision tree:  
It is a widely used method for both classification and regression problems. It consists of an 

acyclic graph, in each node a specific feature is examined, and depending on certain rules; 
the left or the right path is taken. A sample decision tree is shown in Figure 5:  

 
Figure 5. Sample decision tree [5] 

Random Forest: 
It is a collection of decision trees, where each tree is slightly different from the others. 

Random forest (RF) is used to avoid the overfitting of a single decision tree. However, due to 
its complexity, it cannot be visualized and is harder to interpret the decisions and rules, unlike 
the single decision tree [6].  
Neural Network: 

A neural network (NN) is a form of ML called deep learning. In NN, the input data are not 
transformed directly to the output. However, input data are transformed through several suc-
cessive layers called hidden layers. The number of hidden layers represents the depth of the 
model. Each layer transforms the data through weights for each input. The output of one layer 
is the input of the next one [13]. Figure 6 shows the idea behind NN:  
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Figure 6. Representation of neural network [13] 

The data were run through each of the above algorithms and tune their hyperparameters 
to get the best result from each one. Finally, each model is evaluated to be compared with 
others.  

3.7. Model evaluation 

There are several evaluation matrices used in ML depending on the type of the problem, 
classification or regression, and the objective of the model.  

Since the model is a regression model that predicts the ESP run life in days, which is a 
positive integer number, three evaluation matrices have been chosen: Mean Absolute Error 
(MAE), Mean Absolute Percentage Error (MAPE), and R-squared (R2). MAE is calculated by 
equation 4 as following [11]:  
𝑀𝑀𝑀𝑀𝑀𝑀 =  1

𝑀𝑀𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠
 ∑ �(𝑅𝑅𝑀𝑀 −  𝑅𝑅′𝑀𝑀)�

𝑀𝑀𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 −1
𝑀𝑀=0           (4) 

where: n is the number of samples; 𝑅𝑅𝑀𝑀 is the true value and 𝑅𝑅′𝑀𝑀 is the predicted value.  
MAPE is calculated by equation 5 as following [11]: 

𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 =  1
𝑀𝑀𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠

 ∑ �(𝑦𝑦𝑖𝑖− 𝑦𝑦′𝑖𝑖)�
max (|𝑦𝑦𝑖𝑖|)

𝑀𝑀𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 −1
𝑀𝑀=0           (5) 

where: n is the number of samples; 𝑅𝑅𝑀𝑀 is the true value and 𝑅𝑅′𝑀𝑀 is the predicted value. 
R2 is calculated by equation 6 as following [11]:  

𝑅𝑅2 = � n(∑𝑦𝑦𝑖𝑖 𝑦𝑦′𝑖𝑖)−(∑𝑦𝑦𝑖𝑖)(∑𝑦𝑦′𝑖𝑖) 

�[n∑𝑦𝑦𝑖𝑖2−(∑𝑦𝑦𝑖𝑖)
2] [n∑𝑦𝑦′𝑖𝑖

2− (∑𝑦𝑦′𝑖𝑖)
2]
�

2

          (6) 

where: n is the number of samples; 𝑅𝑅𝑀𝑀 is the true value; 𝑅𝑅′𝑀𝑀 is the predicted value and 𝑅𝑅� is the 
mean of all true values.  

4. Results and discussion 

At first, a closer look at our dataset will be beneficial. Table 3 shows some information 
about training and test sets.  

Table 3. Summary of the dataset 

Set Data points Max. run life Min. run life Average run life 
Dataset 363 2034 days 62 days 670 days 
Training set 290 2034 days 62 days 676 days 
Test set 73 1683 days 95 days 618 days 

The dataset is split into training and test sets randomly. In addition, the split ensures that 
each set has representative data of the whole dataset. This is necessary to make sure that 
the model predicts all ranges of run life accurately, not only high or low values. The ESPs’ run 
life  in the study ranges from 2034 to 62 days. This will help the model to predict the run life 
accurately for all ranges. Therefore, the test set was chosen to have all ranges to test the 
accuracy of the model in all ranges.  
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4.1. Study limitation 

In the Egyptian Western Desert fields in our study, we surveyed to find the reason behind 
ESP failure. It was found that 63% of failures were due to electrical causes. This shows the 
significance of electrical failure in these fields. Therefore, all ESP systems in this study have 
failed due to a short circuit in either the motor or the cable. 

4.2. Lasso model results 

Lasso model results are shown in Figures 7 and 8. Lasso model performs slightly better on 
training set than test set. However, its performance is considered poor on both sets.  

  

Figure 7. Lasso model prediction results on training 
data 

Figure 8. Lasso model prediction results on test 
data 

4.3. Decision tree model results 

Decision tree model results are illustrated in Figures 9 and 10. The decision tree model per-
forms very well on the training data. However, the model performance on test data is signifi-
cantly poor. In this case, the model performance is described as overfitting, which is the main 
disadvantage of decision tree models. 

  
Figure 9. Decision tree prediction results on train-
ing data 

Figure 10. Decision tree model prediction on test 
data 

4.4. RF model results 

RF model results are clarified in Figures 11 and 12. The model has good performance over 
both training and test sets. It overcomes the disadvantage of a single decision tree by avoiding 
overfitting. The RF model used 1500 trees with maximum depth of 15 splits. The minimum 
samples to be split was 2 and the leaf node has one sample.  
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Figure 11. Random Forest model prediction on 
training data 

Figure 12. Random Forest model prediction on 
test data 

4.5. Neural Network model results 

NN model results are shown in Figures 13 and 14. 

  
Figure 13. Neural Network prediction results on 
training data 

Figure 14. Neural Network prediction results on 
test data 

 
NN model performs very well on both training and test sets. The NN architecture was 7 

hidden layers with 30 hidden units. The number of epochs was 1000 and the batch size was 
set to be 10 samples. After calculations of all evaluation matrices for each model on training 
and test sets. The results can be summarized for each model in Table 4.  

Table 4. Evaluation summary of each model 

Model Training data Test data 
R2 MAE MAPE R2 MAE MAPE 

Lasso  16.74 331 97% 4.09 366 100.06% 
Decision Tree 99.99 2 0.52% 11.23 342 85.9% 
Random Forest 94.9 107 31.54 96.09 104 30.55% 
Neural Network 99.87 63 9.16% 99.87 66 10.55% 

Table 4 reveals the following results:  
• Lasso model has a very low accuracy score in every evaluation matrix. On average, it pre-
dicts the run life with an error of ± 331 days on the training set. Where the average true run 
life is 676, this margin of error is very high and not acceptable.  
• As stated before, Decision Tree has very good performance over the training set and very 
poor performance on the test set. The good model is described as the model that can predict 
new data correctly [5], which is not the case with a Decision Tree. Therefore, this model is 
not acceptable.  
• RF has very close performance on both training and test sets. The model predicts the run 
life within ±107 of the true value of the training set. This is an error of nearly 1/3 of the 
average true value, which is also considered inaccurate enough.  
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• In NN, the model predicts the run life within ±63 days of the true value in the test set. This 
is about a 10% error. Considering that the average run life is 676 days, this margin is consid-
ered accurate.  
• It is also important to compare RF and NN scores. Despite they both have close R2 scores, 
NN has 3 times better MAPE score and 1.5 times better MAE score. This is the reason beyond 
pre-determining the evaluation matrices depending on a deep understanding of the problem. 
It is also favorable to have several evaluation matrices to have a better view of the model’s 
performance. 

Table 5 shows the results of applying the NN model on current ESP systems running in the 
same fields, where the data were collected to predict their failure date. 

Table 5. Expected run life for current ESP wells 

Wells Date of installation Expected run life Expected failure date 
Well-1 10-Jun-20 507 29-Oct-21 
Well-2 01-Oct-18 1298 20-Apr-22 
Well-3 28-Dec-20 1481 16-Jan-25 
Well-4 02-Jun-19 1098 03-Jun-22 
Well-5 16-May-19 801 24-Jul-21 
Well-6 25-Jan-21 583 30-Aug-22 
Well-7 25-Nov-18 1335 21-Jul-22 
Well-8 30-Aug-17 1446 15-Aug-21 
Well-9 18-Apr-18 1865 27-May-23 
Well-10 20-Sep-19 680 30-Jul-21 
Well-11 05-Mar-21 242 02-Nov-21 
Well-12 04-Sep-20 379 17-Sep-21 
Well-13 09-Feb-21 236 03-Oct-21 
Well-14 21-Jun-21 316 03-May-22 
Well-15 29-May-21 1193 02-Sep-24 
Well-16 12-Feb-21 465 23-May-22 
Well-17 08-Sep-20 464 15-Dec-21 
Well-18 24-May-21 703 27-Apr-23 
Well-19 13-May-21 749 31-May-23 
Well-20 07-May-21 172 25-Oct-21 
Well-21 15-Sep-20 307 18-Jul-21 
Well-22 26-Nov-17 1769 30-Sep-22 
Well-23 20-Feb-20 782 12-Apr-22 
Well-24 12-Dec-19 1170 23-Feb-23 
Well-25 08-Feb-19 991 26-Oct-21 
Well-26 13-Dec-17 1515 05-Feb-22 

These results give the operator a chance to plan the workover rigs schedule and mobiliza-
tion plans. The installation date was obtained from drilling reports. The run life in days is the 
result of the NN model used in this paper. The failure date was calculated by adding the 
number of run life in days to the installation date.  

To clarify the results of the model, Well-1 in Table 6 is taken as an example to show the 
real data, which are fed to the model and from which the result is obtained. Table 5 shows 
the collected data for this ESP. The well is expected to run for 507 days. These calculations 
were done before the ESP failure. This well has failed on 30-Aug-21. This makes the prediction 
accuracy as high as expected in the model evaluation. The real run life is 447 days. The MAE 
for this prediction is 60 days, which is close to the MAE of the test set, 66 days. Thus, the 
developed model could be used with current ESP installation to help in failure prediction.  
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Table 6. Well-1 data 

Expected run life (days) 507 
Phase to Ground resistance (MΩ) 1300 
Motor load  0.590909 
PI (psi) 2556 
Separator number 1 
Pump grade  A & B 
Relative rate 0.64431 
GOR (SCF/STB) 50 
Salinity (ppm) 107800 
API 35 

5. Conclusions 

In this paper, an ML model was built to predict an ESP run life with acceptable accuracy. 
Based on the results; we can conclude the following:  
• ML solutions are applicable in the Oil industry. ML algorithms and tools are either free to 
use or very cheap compared to other industry software. Also, the ML developers’ community 
provides beneficial and continuous support to users.  
• The most significant obstacle in applying ML in the Oil industry is the lack of a sufficient 
quantity of representative data. ML algorithms sometimes require thousands of data points. 
• ML has great potentials in the Oil industry, especially in failure prediction.  
• Failure prediction helps with choosing suitable equipment, proper designs, and operating 
parameters. 
• It will help with planning workover operations before failure occurs. This will save time and 
reduce production loss. 
• The complexity of ESP systems requires complex algorithms such as NN and RF.  
• The complex models are harder to optimize and interpret.  

6. Recommendations 

For better implementation of ML in the Oil industry; these are our recommendations:  
• It will be a great asset for all companies operating in the Egyptian Western Desert to build 
a database for their ESP systems designs, operating parameters, and failure analysis. These 
data are the core for building and tuning ML models. It will also help with enhancing field 
practice for each company. 
• Applying the developed model to other ESP systems in different Western Desert fields to 
enhance the results and achieve more generalization.  
• Encouraging petroleum engineers to work with data scientists and ML practitioners to inte-
grate their knowledge into building and improving failure prediction models. 
• Regarding ESP operations, ML could help with optimizing operating parameters such as 
flowing rate, discharge pressure, and running ampere. 

Nomenclature  

𝑅𝑅𝑀𝑀 True run life, days 
𝑅𝑅′𝑀𝑀 Predicted run life, days 
n Number of samples 

Abbreviations  

ESP Electrical Submersible Pump 
MAE Mean Absolute Error 
MAPE Mean Absolute Percentage Error 
ML Machine Learning 
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MTTF Mean Time to Failure 
MTTR Mean Time to Repair 
NN Neural Network 
RF Random Forest 
OHTL Overhead Transmission Line 
PI Intake pressure 
PD Discharge pressure 
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