Available online at www.vurup.sk/pc
Petroleum & Coal 49 (2), 48-59, 2007

PRODUCTION OF ULTRA LOW SULFUR DIESEL: SIMULATION AND SOFTWARE DEVELOPMENT

Saeid Shokri *, Mahdi Ahmadi Marvast, MortezaTajerian

Research Institute of Petroleum Industry (RIPI), Tehran 18745 –4163, IRAN, Email: shokris@ripi.ir

Received December 7, 2006, accepted June 12, 2007

Abstract

One of the recent challenges in the petroleum refineries is the reduction of sulfur content of gas oil to the new lower limits. The specification for the sulfur content of gas oil has been reduced from 500 ppm to 50 ppm in 2005. At present, the necessity of even deeper desulfurization is being discussed in Europe and the United States. The simulators are useful tools to manage hydrodesulfurization operation and to improve the profitability of the process. In this regard, software was developed to simulate Hydrodesulfurization process (HDS) in trickle bed reactors.

The simulation was based on HYSYS environment, in which the HDS reactor model results (based on Fortran codes) were implemented in it through HYSYS Customization Capability . The multiphase reactor was simulated with a one-dimensional heterogeneous model. The reactor model was validated with the pilot data. By the use of simulation results, the effects of some pertinent operating parameters such as reactor temperature and pressure and H_2 /oil ratio in gas oil feed on the performance capability of the HDS plant were investigated. Based on these results the optimum operating conditions were determined. The simulation results have been used to estimate the optimum operating conditions for the HDS pilot plant to be operated in RIPI.

Key words: Simulation; Multiphase Reactors; Heterogeneous Models; Gas oil; Hydrodesulfurization

1. INTRODUCTION.

The presence of sulphur compounds in crude oil and heavy fractions is an undesirable issue. Sulfur compounds are one of the most important impurities in various petroleum fractions that cause many problems. For example, in the case of fuels they cause environmental pollution, and in the refining and petrochemical industries they poison catalysts. It can lead to corrosivity in oils and lubricants and poisonous emissions such as SO₂ and H₂S when the fuel is burned.

Several processes have been proposed to deal with the problem of removing these compounds. Hydrodesulfurization technique is very effective in sulfur removal from fuel oil, where the molecules that contain sulfur lose that atom by hydrogenation reactions.

The sulfur containing components are converted to H₂S and Hydrocarbons in presence of Hydrogen on solid catalyst. Hydrodesulfurization process is mostly carried out in trickle bed reactors.

There have been reported many works on hydrodesulfurization. Song ^[1] reviewed both catalyst and process of desulfurization of fuels. Korsten and Hoffman ^[2] made a model for desulfurization of vacuum gas oil in a trickle bed reactor .The simulation results showed good agreement with experimental data over a wide range of temperature, pressure, space velocity and gas /oil ratio. They used Langmuir – Hinshelwood kinetics for rate equations. Yamada and Goto ^[3] compared counter - current and co-current operations for hydrodesulfurization.

Chowdhyry et al. [4] expanded Korsten's models and applied it to desulfurization and dearomatization of the diesel oil. Inert particles were put on the catalyst to transfer hydrogen from gas to liquid. Dearomatization reaction and gas liquid mass transfer in non-active zone were added to Korsten's model. Simulation results of desulfurization and dearomatization agreed with the experimental data.

Thiophenic components are known to be the most refractory organic sulfur-containing components. Rigorous kinetics for the hydrodesulfurization (HDS) of thiophene and benzothiophene has already been derived ^[5,6]. For dibenzothiophene, hydrodesulfurization rate equations have been reported by Broderic and Gates [7] and by Edvinsson and Irandoust [8]. Broderic and Gates [7] neglected the hydrogenation of biphenyl into cyclohexylbenzene, while Edvinsson and Irandoust [8] did not determine the influence of H₂S concentration on the reaction rates.

Recently kinetic modeling of hydrodesulfurization of oil fraction was introduced by Froment et al. [9]. Their work was proceeded by developing rate equations for all reactions in the network for the hydrodesulfurizatin of dibenzothiophene on the commercial CoMo/Al₂O₃ catalyst by Vanrysselberghe and Froment [10].

In the present study, a simulation method for hydrodesulfurization of gas oil in trickle bed reactors is presented. The mass balances are described by a reactor model that is based on the two-film theory ^[2] and the rate of chemical reactions of Hougen – Watson type ^[10] is being used.

The proposed model is validated by the pilot data. Based on the reactor model, a hydrodesulfurization process is being simulated. In addition, a parametric sensitivity analysis on the process performance being put forward in order to estimate the optimum operating conditions for the HDS reactor and process.

2. FORMULATION OF MATHEMATICAL MODEL

Hydrodesulfurization of oil fractions is carried out in a multiphase reactor. There are three phases in reactor: Fixed bed of porous catalyst particles, a hydrogen gas phase and a liquid phase. Operation of trickle-bed reactors is marked by the simultaneous presence of two phases, a gaseous and a liquid one, flowing over and through a third catalyst solid phase; both streams are co current down flow [11].

Origins of S in diesel depend critically on how it is formulated from the refinery fractions. Sulphur compounds in the lightest products are usually the easiest and cheapest to treat .The operating conditions for desulfurization of heavy fractions depend crucially on the chemical nature of the sulphur species present Fig (1). Removing S from higher molecular weight dibenzothiophenes (DBT) especially those with side chains in hindering positions are some of the most difficult desulfurization tasks to achieve.

Among thiophenic compounds in petroleum fractions, dibenzothiophene (DBT) and its derivatives are the least reactive sulfur-containing constituents, and are; therefore, the key components in determining hydrotreating process kinetics [13].

The present study kinetic modeling and simulation of gas oil HDS reactor has been carried out for dibenzothiophene (DBT) as the most sever resisting component against HDS.

In this work the gas phase assumes to be a mixture of hydrogen (H₂) and hydrogen sulfide (H₂S) and liquid phase consists of gas oil, containing sulfuric compounds of dibenzothiophene (DBT). HDS reactor Simulation is performed on cobalt molybdenum over alumina support (CoMo/ Al₂O₃) catalyst. Gas phase is continuous phase and liquid phase is dispersed, where its stream on the catalyst particles is shaped to laminar form [12].

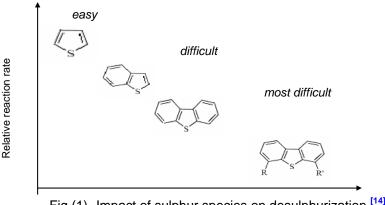


Fig (1)- Impact of sulphur species on desulphurization [14]

The modeling of a fixed bed HDS reactor is presented here. According to the common classification of fixed bed reactor models, one-dimensional heterogeneous model with plug flow model for both gas and liquid phases is being used.

2.1. Reaction Network

The components that take part in catalytic reactions are enumerated as follows:

1) H ₂	(Hydrogen)	<i>4)</i> C₁₂H₁₀	(Biphenyl, BPH)
2) H ₂ S	(Hydrogen Sulfide)	5) C₁₂H₁ ₆	(Cyclohexyl benzene, CHB)
3) $C_{12}H_8$	S (Dibenzothiophene, DBT)	6) C ₁₂ H ₂₂	(Bicyclohexyl, BCH)

HDS of DBT involves two parallel routes :(1) hydrogenolysis of the C-S bonds to give biphenyl and (2) hydrogenation of one of the benzenoid rings followed by rapid hydrogenolysis of the C-S bonds to give cyclohexylbenzene.

The general reaction equation is as follows.

$$v_1$$
 (Sulfur compounds) + v_2 (hydrogen) v_3 (hydrocarbon)+ v_4 (hydrogen sulfide)

The corresponding chemical reactions are as presented as:

It is generally accepted that there exist two types of adsorption sites on the surface of the HDS catalyst, one site on which DBT and its products competitively adsorb and the other site on which H₂ adsorbs ^[16].

Based on recent studies of G.F. Froment et al [10] the two different types of active sites include: σ -site for hydrogenolysis and τ - sites for hydrogenation.

The above reactions constitute a network that its schematics representation is shown in Fig (2) [15].

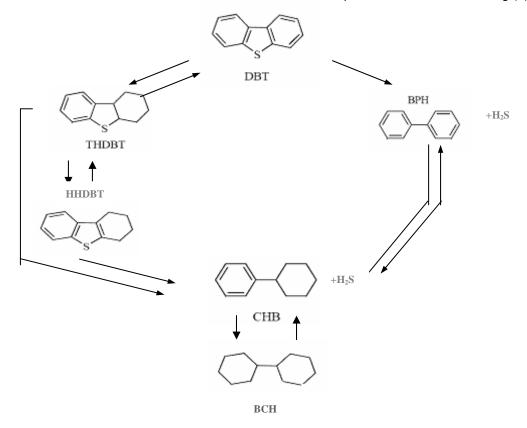


Fig 2. Reactions network for HDS of DBT [15]

2.2. Rate of Reaction:

Based on the mechanism proposed by Vanrysselberghe and Froment ^[10], DBT Hydrogenolysed into BPH and H₂S on the σ -sites and in parallel DBT Hydrogenated into THDBT and HHDBT on the τ -sites, followed by hydrogenolysis into CHB and H₂S on the σ -sites. The rate equations for DBT consumption on the σ and τ - sites and for BPH, CHB on τ - sites are written as follows:

$$r_{DBT,\sigma} = \frac{k_{DBT,\sigma} K_{H,\sigma} K_{DBT,\sigma} C_{DBT} C_{H_2}}{(1 + K_{DBT,\sigma} C_{DBT} + \sqrt{K_{H,\sigma} C_{H_2}} + K_{BPH,\sigma} C_{BPH} + K_{H_2S,\sigma} C_{H_2S})^3}$$
(5)

$$r_{DBT,\tau} = \frac{k_{DBT,\tau} K_{H,\tau} K_{DBT,\tau} C_{DBT} C_{H_2}}{(1 + K_{DBT,\tau} C_{DBT} + \sqrt{K_{H,\tau} C_{H_2}} + K_{BPH,\tau} C_{BPH})^3}$$
(6)

$$r_{BPH,\tau} = \frac{k_{BPH,\tau} K_{H,\tau} K_{BPH,\tau} C_{BPH} C_{H_2}}{(1 + K_{DBT,\tau} C_{DBT} + \sqrt{K_{H,\tau} C_{H_2}} + K_{BPH,\tau} C_{BPH})^3}$$
(7)

$$r_{CHB,\tau} = \frac{k_{CHB,\tau} K_{H,\tau} K_{CHB,\tau} C_{CHB} C_{H_2}}{(1 + K_{DBT,\tau} C_{DBT} + \sqrt{K_{H,\tau} C_{H_2}} + K_{BPH,\tau} C_{BPH})^3}$$
(8)

The reaction rate parameters are presented in table3.

Table3. Reaction rate parameter [10]

Table3. Reaction rate parameter [10]				
Component Index	k (kmol/kg _{cat} hr)	K (m³/kmol)		
DBT, σ	$2.44336E10exp \left[-\frac{122770}{R_{gas}T} \right]$	7.56868E1		
Н, σ		$3.36312E-11exp$ $\left[\frac{113232}{R_{gas}T}\right]$		
ВРН, σ		3.84984E-4exp $\left[\frac{48214}{R_{gas}T}\right]$		
H₂S, σ		1.47118E-8exp $\left[\frac{105670}{R_{gas}T}\right]$		
DBT, τ	2.86757E16.exp $ \left[-\frac{186190}{R_{gas}T} \right] $	$2.50395 \text{E-7exp} \left[\frac{76840}{R_{gas}T} \right]$		
Н, τ		1.40255E-15exp $\left[\frac{142693}{R_{gas}T}\right]$		
ВРН, т	3.41120E23exp $\left[-\frac{255714}{R_{gas}T} \right]$	4.96685exp $\left[\frac{37899}{R_{gas}T} \right]$		
CHB, τ	2.50235E2	1.35325E-3		

2.3. Reactor Model Equations

The kinetic modeling is based on the two –film theory as shown in Figure 3. Since no reactions occur in the gas phase, the mass –balance equations for the gaseous compounds (components 1,2) are:

$$u_{G} \cdot \frac{dc_{i}^{G}}{dz} = -K_{L} a_{L} \left(\frac{C_{i}^{G}}{H'_{i}} - C_{i}^{L}\right) \qquad i = 1, 2$$
(9)

Where
$$H_i' = \frac{H_i}{RT}$$

at $Z = 0$ $C_i^G = C_{i0}^G$ $i = 1,2$

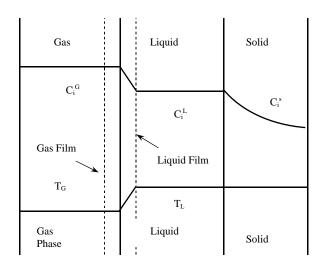


Fig.3 -Mass transfer model

No heat exchange with the surroundings of the reactor has to be accounted for, since hydroprocessing rectors are operated adiabatically. Three energy equations are considered, one for each phase. The energy transfer between the gas phase and the liquid phase is made up of a conductive heat flux and convective contribution due to the transport of enthalpy by the interphase mass transfer .The Energy equation for gas phase is presented as:

$$u_{G} \rho_{G} C_{PG} \frac{dT_{G}}{dz} = -h_{L} a_{L} (T_{G} - T_{L}) - \sum_{i=1}^{2} N_{i} a_{L} C_{P_{i,G}} (T_{G} - T_{L})$$
(10)

at
$$Z = 0$$
 $T_G = T_{G0}$ $i = 1,2$

Mass -balance equation for liquid phase is written as:

$$u_{L} \frac{dc_{i}^{L}}{dz} = N_{i} a_{L} + \sum_{j=1}^{4} (1 - \varepsilon_{1}) \rho_{C} v_{ij} r_{j}^{s} \eta_{j} \quad i = 1, 2, ..., 6$$
(11)

Where
$$N_i = K_L \left(\frac{C_i^G}{H_i'} - C_i^L \right)$$
 (12)

at
$$Z = 0$$
 $C_i^L = C_{i0}^L$ $i = 1,2$

For liquid –solid heat transfer a convective transfer term is considered .The Energy equation for liquid phase is written as follows:

$$u_{i}\rho_{L}C_{PL}\frac{dT_{L}}{dz} = \sum_{i=1}^{4} (1 - \varepsilon_{1}) \rho_{C}\eta_{j}r_{j}^{s}(-\Delta H_{j}) + h_{L}a_{L}(T_{G} - T_{L}) + \sum_{i=1}^{2} N_{i}a_{L}\Delta H_{i}^{SOL}(T_{L})$$
(13)

at
$$Z = 0$$
 $T_L = T_{L0}$ $i = 1,2$

In this work a mathematical model for the effectiveness factor calculation of HDS catalyst has been developed. The effectiveness factor for each reaction is calculated from the following formula:

$$\eta_{m} = \frac{3\int_{0}^{R_{C}} r^{2} r_{m}(C_{1}^{s},...C_{5}^{s},T_{L}) dr}{R_{c}^{3} r_{m}(C_{1}^{s},...,C_{5}^{s},T_{L})}$$
(14)

Where R_c is the radius of catalysts.

Mass -balance equations inside catalyst pellet is described as:

$$\frac{D_e}{r^2} \frac{\partial}{\partial r} \left(r^2 \frac{C_i^s}{\partial r} \right) = -\rho_c \sum_{m=1}^{NR} \upsilon_{im} r_m \left(C_i^s, ..., C_5^s, T_L \right) \qquad i = 1, 2, ..., 6$$
(15)

B.C:
$$r = R$$
 $C_i^s = C_i^l$ i = components number (16) $r = 0$ $\frac{\partial C_i^s}{\partial r} = 0$ NR= Number of reaction

The integration in the axial direction was performed using a fourth order Runge –Kutta routine with variable stepsize. The intraparticle integration was carried out with an orthogonal collocation method. Non-linear algebraic equations in catalyst pellets have been solved by orthogonal collocation method and modified Powel dogleg numeric methods [17,18].

2.4. The model parameters

The physico - chemical parameters required by the model are introduced in Table (1).

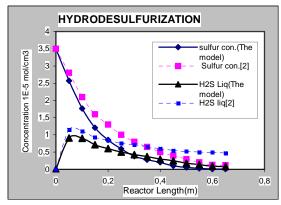
Table 1. Physico – chemical properties estimation methods

Property	Method	Property	Method
Heat transfer coefficient	Chilton – Colburn	Molecular Diffusivity	Tyn-Calus
	analogy [19]		correlation [19]
Henry coefficient	[2]	Critical specific volume	Riazi-Daubert correlation [21]
Viscosity	[19,20]	Gas-Liquid mass-transfer coefficient	[22]
Heat Capacity	[19]		

2.5. Main assumptions

By formulating the mass transfer equations, the following assumptions are made:

- 1. The process is operating in steady state condition.
- 2. Chemical reactions only take place at the catalyst, and not in the gas or in the liquid phase.
- 3. Wetting efficiency of 100 percent is assumed.
- 4. There is no temperature difference inside the catalyst pores.
- 5. There is no radial concentration profile in the reactor
- 6. The reactor is non- isothermal.
- 7. Vaporization and condensation of oil do not take place.


3. Model Validation

In order to validate the reactor model, the reactor model predictions have been compared with the data obtained from the pilot plant reported by Korsten and Hoffman ^[2]. The pilot plant characteristics are shown in Table (2).

Fig (4) shows the sulfur and H_2S (in liquid phase) concentration profiles along the reactor length predicted from the model and those from pilot data. The results show a good agreement between the model predictions and the pilot data. Hydrogen concentration profiles along the reactor length in liquid phase for both the model and pilot data are shown in Fig (5). Relative error of near 4-7% is may be seen between the results obtained from the pilot plant and those predicted the model.

Table 2. Input Data according to Pilot Plant [2]

Characteristic	Input data	Characteristic	Input data
Pressure, P, MPa	10	Catalyst particle diameter, (m)	0.0013
Temperature, T, °C	370	Feed API	22.7
WHSV, h ⁻¹	0.9	MeABP of the feed, °C	451
Reactor diameter (cm)	3	Feed molecular weight	420
Reactor length packed with catalyst, (m)	0.667	Feed density at 15.6° C, (kg/m3)	914.6
Bed void fraction	0.5	Gas flow rate, Qg, (m3/hr)	0.004087
Particle void fraction	0.6	Liquid flow rate, Q _L , (m3/hr)	0.0001914
Catalyst particle density, (kg/m3)	1420		

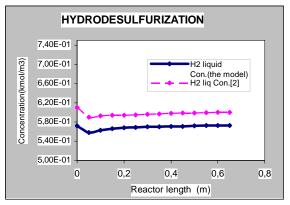


Fig.4. Sulfur & H₂S concentration profile

Fig.5. H₂ concentration profile

4. SIMULATIONS AND DISCUSSION:

The gas oil hydrotreater processes straight-run atmospheric and vacuum gas oils from the crude unit and cracked atmospheric and vacuum gas oils from the hydrocracker fractionator and delayed coking units. As a result of hydrotreating, the sulphur compounds are converted to hydrogen sulphide. The feed system includes two independent gas feed module and liquid feed module.

The gas oil stream entering the unit, pre-heated and mixed with hot hydrogen-rich recycle gas stream (The hydrogen system may be once-through or recycle).

This mixture is passed through a fixed bed reactor (trickle-bed), where hydrogenation of the contaminants occurs. The high-pressure hydrogen-rich gas contacts an aqueous amine solution, which absorbs hydrogen sulphide. After purging a portion to maintain hydrogen purity, the remainder of the hydrogen-rich gas, along with make-up hydrogen, is recycled to the reaction vessel for reuse.

The ammonia produced in the reaction vessel will be dissolved in the process water, which is removed as sour water. The liquid hydrocarbon products from the separation stage are routed to a fractionation section for removal of any dissolved gases and fractionation into naphtha/jet and gas oil. The sour gases are sent to the hydrogen recovery unit for further nitrogen and aromatics reduction. The gas oil is sent to storage for eventual blending into the synthetic crude oil.

A simplified process flowsheet for a standalone hydrotreating configuration is shown in fig (6).

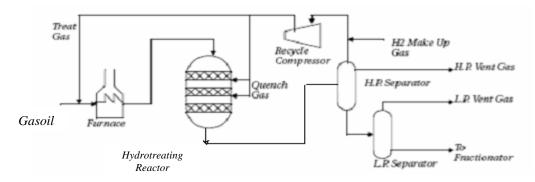


Fig.6. Shematics of hydrodesulfurization process

The Research Institute of Petroleum Industry (RIPI) has been being involved in HDS technology development for some years. In this regard and in order to get more realistic data and being more familiar with the challenges of HDS plant operation in the pilot scale, a pilot plant has been designed and is being constructed in the RIPI.

The pilot plant simulation was done using HYSYS software. The separate Fortran codes written for the reactor simulation were linked to the Hysys environment using the HYSYS Customization tool. The visual basic program interface was used to link Fortran and HYSYS environment as shown in Fig (7).

In Fig (8) the PFD of the process simulated by HYSYS is shown. The simulation results up to the reactor input data that are calculated by HYSYS, go to the reactor model codes (fortran

codes) to calculate the reactor output results .The reactor output results from the fortran codes are transferred to HYSYS via visual Basic environment. Hysys again calculates the results for the entire simulation up to the end of process, in which low sulfur diesel is produced. The gas oil feed data, reactor specifications and treated gas oil product characteristics are tabulated in Table (3).

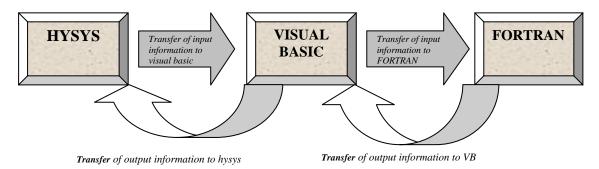


Fig. 7. Information flow diagram of the simulation software

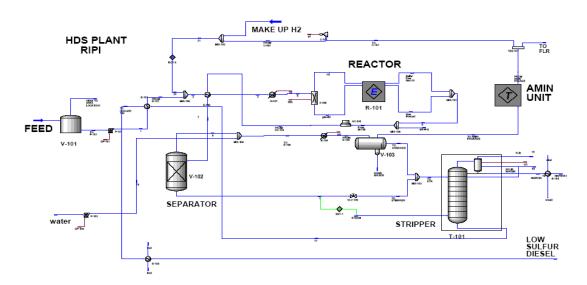
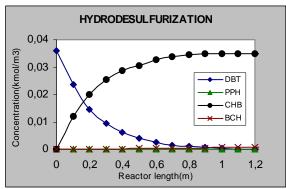


Fig. 8. PFD of Process simulated by HYSYS. The reactor model results are implemented interactively to the simulation environment

Table 3. The simulation input data and results

Specification	Value	Specification Value			
Feed:		Reactor:	Reactor:		
Total sulphur, %wt.	1,1	Reactor diameter, m	0.3		
Specific gravity@60F	0,8250	Reactor length, m	1.2		
IBP, °C	223	Temperature, °C	370		
5 vol.%, °C	249	Pressure, kPa	7150		
10 vol.%	259	Catalyst particle density, kg/m3	1420		
30 vol.%, °C	280	Catalyst particle diameter, m	0.0013		
50 vol.%, °C	300	WHSV, h ⁻¹	3.12		
70 vol.%, °C	320	Feed API	22.7		
90 vol.%, °C	354	Product:			
95 vol.%, °C	366	Total sulfur, wt ppm	47		
FBP, °C	378	Temperature, °C	35		
MeABP, °C	296.82	Pressure, kPa	300		
Feed rate, bbl/day	20				


H₂ make up:			
Temperature, °C	77		
Pressure, bar	58		
Composition, % mol.	H ₂ -75, CH ₄ -25		
H2/Oil, scf/bbl	1000		

5. PARAMETRIC SENSITIVITY ANALYSIS

Based on the HDS pilot plant simulation, parametric sensitivity analysis has been carried out. In this study, the effects of reactor temperature and pressure and H₂/oil ratio of untreated gas oil on the sulfur concentration of hydrogenated products have been considered.

The concentration profiles of DBT, BPH, CHB and BCH along the reactor length are shown in Figures (9). It is seen that CHB is the main product of DBT hydrogenation .The concentrations of BPH and BCH products are too low respect to CHB.

The effect of reactor temperature on hydrodesulfurization was studied at the temperature range of $340\text{-}400^{\circ}\text{C}$ and results are presented in Fig (10). As it can be seen, at constant pressure and H₂/oil ratio, the product sulfur content decreases as the temperature increases. The decrease of sulfur concentration is rapid up to about 360°C . Beyond this temperature the decreases is very slow.

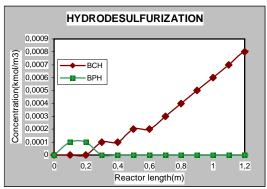
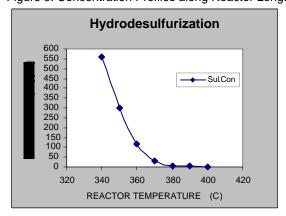



Figure 9. Concentration Profiles along Reactor Length. The reactor conditions are presented in Table 2.

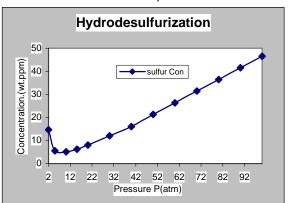


Figure 10. Effect of reactor temperature on sulfur, concentration in the treated gas oil. The input characteristics of the simulation are presented in table 3.

Figure 11. Effects of reactor pressure on sulfur Concentration in the treated gas oil. The input characteristics of the simulation are presented in table 3

Effects of pressure on sulfur concentration are presented in Fig (11). It can be seen that the sulfur concentration decreases with increasing pressure. This influence can be reversed above 12 atm. This phenomena may be interpreted as follows: by increasing pressure to 12 atm, the rate of reactions increase and so the sulfur concentration in the product decreases. Above 12 atm, the pressure rising has another effect dominating over reaction rate increase: the viscosity of the oil increases with increasing pressure, resulting in decrease in diffusivity and hence mass-transfer

coefficient. This means that below 12 atm, the reactions are the rate-limiting step but above that, the diffusion would be the rate-limiting step in HDS reactions.

Effect of H_2 /oil ratio on sulfur concentration in the hydrogenated products is given in Fig (12). It is observed that by increasing H₂/oil ratio to 55.7, the sulfur concentration decreases, but it increases again by increasing H₂/oil ratio. It means that the optimum H₂/oil ratio for use in HDS pilot plant would be about 55.7. This trend is like that happened for pressure and could be described like that.

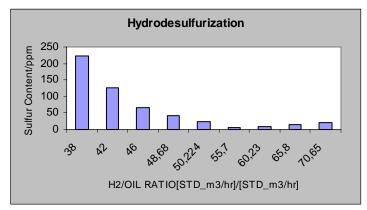


Figure 12. Effect of H2/oil ratio on sulfur concentration in the treated gas oil. The input characteristics of the simulation are presented in table 3

6. CONCLUSION

Deep hydrodesulfurization of gas oil in the trickle bed reactor was simulated using one dimensional heterogeneous reactor model.

Since hydrodesulfurization is strongly limited by hydrogen sulfide the chemical reaction rate is expressed by Hougen -Watson rate equation [10]. Also as among thiophenic compounds in petroleum fractions, dibenzothiophene (DBT) is the least reactive sulfur-containing constituents, it was selected as the key component in determining hydrotreating process kinetics.

The present study consist of two sections:

- 1- Simulating HDS trickle bed reactor. For this purpose, the suitable reaction rate (Hougen Watson rate of reactions type) and mathematical model (one dimensional Heterogeneous model for the reactor, the two film theory for kinetic modeling) was selected and solved. The reactor model results were validated with the pilot plant data reported in literature.
- 2- Simulation of HDS process. Following RIPI's experience in HDS, an HDS pilot plant has been designed and is being constructed in the RIPI. The pilot was simulated by HYSYS in this study and the HDS reactor model results were implemented in it through HYSYS customization tool. The operating conditions of the process simulation were considered like those of pilot plant. Based on the simulation, a parametric sensitivity analysis has been carried out. A better performance of the system is achieved by applying a feed with an H₂/oil ratio of 55.7.

Increasing the reactor temperature has a major effect on sulfur concentration in treated gas oil. Increasing reactor pressure up to 12 atm, decreases the sulfur concentration to minimum.

Notation	
a_L	Gas -liquid interfacial area per unit reactor volume, (m_i^2/m_r^3)
C_{i}^{G}	Molar concentration of i in gas bulk, (mol ³ / m _G ³)
$C_{i}^{L} =$	Molar concentration of i in liquid bulk, (mol / m _l ³)
С	Specific heat, (J / kg °K)
C _i ^s	Component i concentration on the catalyst surface
FBP	Final boiling point, °C
h	liquid-gas heat transfer coefficient, (W / m _i ² k)
H'	Henry's law coefficient, (J / mol)
ΔH^{Sol}	Heat of solution, (J / mol)
ΔΗ	Heat of reaction, (J / mol)
IBP	Initial boiling point, °C

$K_{\!\scriptscriptstyle L}$	Overall mass transfer coefficient in gas –liquid interface, (m³/m².s)
MeABP	Mean average boiling point of the feed, °C
N_i	Rate of transfer of i from the gas bulk to the liquid bulk, (mol/m _i ² s)
NC	Number of Component
R_{gas}	gas constant, (kJ kmol ⁻¹ K ⁻¹)
r_i	rate of reaction j per unit catalyst mass for heterogeneous reaction,(mol/ g _{cat} .s)
Ť	Absolute temperature, (°K)
U_{G}	Superficial gas velocity, (m_G^3/m_r^2s)
u_L	Superficial liquid velocity, (m ³ L / m _r ² S)
WHSV	Weight hourly space velocity, (h ⁻¹)

Greek Symbols		Subscripts	
σ	hydrogenolysis site	BCH	bicyclohexyl
3	internal catalyst pore	BPH	biphenyl
ε ₁	catalyst bed void fraction, (m^3L/m^3P)	CHB	cyclohexylbenzene
η_{j}	effectiveness factor of reaction j	DBT	dibenzothiophene
$ ho_{G}$	gas density, (kg/m_G^3)	Н	atomic hydrogen
$ ho_{ m C}$	catalyst density, (kg cat m³P)	H_2	molecular hydrogen
$ u_{ij}$	ij component from stochiometry coefficient matrix	H₂S	hydrogen sulfide
T	hydrogenation site	σ	With respect to the hydrogenolysis function
		τ	With respect to the hydrogenation function

Superscripts

g gas I liquid s solid

References

- [1] Song C.: An Overview of New Approaches to Deep Desulfurization for Ultra-Clean Gasoline, Diesel Fuel and Jet Fuel, Catal. Today, 86, 211(2003)
- [2] Korsten Hans, Hoffmann U.: Three Phase Reactor Model for Hydrotreating in Pilot Trickle Bed Reactors "AICHE. J, <u>42</u>, No.5, May (1996).
- Yamata H., Goto Sh.: Advantages of Counter-Current Operation for Hydrodesulfurization in Trickle bed Reactors, Korean J.Chem.Eng.21 (4), 773-776(2004)
- [4] Chowdhury R., Pedernera E. and Reimert R.: Trickle Bed Reactor Model For Desulfurization and Dearomatization of Diesel, AICHE J., 48,126(2002)
- [5] Van Parys I.A.; Froment G.F.: Kinetics of Hydrodesulfurization on a CoMo/y-Al₂O₃ Catalyst.1. Kinetics of the Hydrogenolysis of Thiophene, Ind Eng.Chem.Prod.Res, Dev.25, 431, (1986)
- [6] Van Parys I.A., Hosten L.H., Froment G.F.: Kinetics Of Hydrodesulfurizationon a CoMo/y-Al $_2$ O $_3$ Catalyst .2. Kinetics of the Hydrogenolysis of Benzothiophene "Ind Eng.Chem.Prod.Res, Dev.25, 437. (1986)
- [7] Broderick D.H.; Gates B.C.: Hydrogenolysis and hydrogenation of Dibenzothiophene Catalyzed by Sulfided CoO-MoO₃/ *y*-Al₂O₃: The Riaction Kinetics, AICHE J.27, 663. (1981)
- [8] Edvisson R.; Irandost S.: Hydrodesulfurization of Dibenzothiophene in a Monolithic Catalyst Reactor." Ind. Eng.Chem.Res, 32,391, (1993)
- [9] Froment G. F., Depauw Cuy A., Vanrysselberghe V.: Kinetic Modeling and Reactor Simulation in Hydrodesulfuriztion of Oil Fractions, Ind. Eng. Chem. Res, 33, P.2975 2988 (1994)
- [10] Vanrysselberghe V., Froment G.F.: Hydrodesulfurization of Dibenzothiophene on a CoMo/Al₂O₃ Catalyst: Reaction Network and Kinetics, Ind.Eng.Chem.Res, 3, 3311-3318, (1996)
- [11] Avraam Dimitrios G., Vasalos Iacovos A.: HdPro a Mathematical Model of Trickle bed Reactors for the Catalytic Hydroprocessing of Oil Feedstocks, Catalysis Today 79-80;275-283;(2003)
- [12] Vanrysselberghe V., Froment G.F.: Kinetic Modeling of Hydrodesulfurization of Oil Fractions: Light Cycle Oil,. Ind, Eng. Chem. Res, 37, 4231 4240, (1998).

- [13] Yao Wang, Zhongchao Sun, Anjie Wang, Lifeng Ruan, Mohong Lu, Jing Ren, Xiang Li, Chu Li, Yongkang Hu, and Pingjing Yao: Kinetics of Hydrodesulfurization of Dibenzothiophene Catalyzed by Sulfided Co-MOo/MCM-41 Ind, Eng. Chem. Res, 43,2324-2329 (2004)
- [14] Broderick, D.H.; Gates,B.C. Hydrogenolysis and Hydrogenation of Dibenzothiophene Catalysed by Sulfided Co-Mo/_Y-Al₂O₃. The Reaction Kinetics .AICHE J. 27(4),663,(1981)
- [15] Toshiaki Kabo, Kazuo Akamatsu, Atsushi Ishihara, Shujiro Otsuki, Masazumi Godo,Qing Zhang, and Weihua Qian: Deep Hydrodesulfurization of Light Gas Oil.1.Kinetics and Mechanisms of Dibenzothiophene Hydrodesulfurization, Ind , Eng. Chem. Res,36,5146-5152,(1997)
- [16] Singhal, G.H., Espino, R.L., Sobel, J.E., Huff, G.A.: Hydrodesulfurization of Sulfur Heterocyclic Compounds: Kinetics of Dibenzothiophene, J. Catal. 6, 457, (1981)
- [17] Rice R.G., Do D. D.: Applied Mathematics and Modeling for Chemical Engineers, John Willey & Sons, Canada, (1995)
- [18] Finlayson Bruce A: The Method of Weighted Residuals and Variational Principles, New York, Academic Press, (1972).
- [19] Poling Bruce E., Prausnitz John M., O'Connell John P.: The Properties of Gases & Liquids, 5th edition, (2001)
- [20] API, Technical Data Book-Petroleum Refining, Amer. Pet. Inst.(1984)
- [21] Ahmad, T.: Hydrocarbon Phase Behavior, Gulf Publishing, Houston, (1989)
- [22] Perry, R.H. and D. Green, Ed's, "Perry's Chemical Engineer's Handbook", 6thed.McGraw-Hill, New York,(1984)
- [23] Lapas A.A., Budisteanu R., Drakaki K., Vasalos I.A.: Production of Low Aromatics and Low Sulphur Diesel in Hydrodesulfurization (HDS) Pilot Plant Unit: Global Nest: the Int. J. Vol 1,No 1, pp 15-22, (1999)