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Abstract 

Miscible CO2 flooding is one of the most attractive enhanced oil recovery options thanks to its 
microscopic efficiency improvement. A successful implementation of this method depends mainly on 

the accurate estimation of minimum miscibility pressure (MMP) of the CO2-oil system. As the 
determination of MMP through experimental tests (slim tube, and rising bubble apparatus (RBA)) is 
very expensive and time consuming, many correlations have been developed. However, all these 
correlations are based on limited set of experimental data and specified range of conditions, thus 
making their accuracies questionable. In this research, we propose to build robust, fast and cheap 
approach to predict MMP for pure CO2-oil by applying hybridization of artificial neural networks with 
differential evolution (DE). DE is used to find best initial weights and biases of neural network. Four 

parameters that affecting the MMP are chosen as input variables: reservoir temperature, mole fraction 
of volatile-oil components, mole fraction of intermediate-oil components and molecular weight of 
components C5+. 105 MMP data covering wide range of conditions are considered from the published 
literature to establish the model. The obtained results demonstrate that our approach outperforms all 
the published correlations in term of accuracy and reliability. 

Keywords: Pure CO2 minimum miscibility pressure; carbon dioxide injection, artificial neural networks, differential 
evolution. 

 

1. Introduction 

With the technological advancement worldwide, demand for energy (mainly fuel energy) is 

growing exponentially thus requiring the creation of effective methods for tertiary recovery of 

the residual oil before the stage of reservoirs abandonment. Miscible gas injection, especially 

miscible CO2 flooding, is one of well-established enhance oil recovery methods (EOR) during 

recent decades. This method is able to improve recovery of original oil in place over of 20% [1]. 

The right parametric design of miscible CO2 injection depends greatly on a key factor: 

minimum miscible pressure (MMP), which is defined as the lowest pressure at which the flood 

changes from immiscible (multiple phase flow) to miscible (single phase flow) [2-4]. Hence an 

accurate estimation of MMP seems to be necessary. 

MMP can be estimated using experimental tests such as slim tube [5], rising bubble appa-

ratus (RBA) [6], multi-contact mixing-cell experiment  [4] or the vanishing interfacial tension 

(VIT) technique [7]. Although the accuracy of these tests, all of them are very expensive and 

time consuming. An alternative way which is practicable on the slightest costs to calculate the 

MMP of CO2-oil systems is insured by the available empirical/analytical correlations. However, 

as all these correlations have been developed under experimental data of CO2-oil systems, 

they have certain constraints and conditions of application. Holm and Josendal first graphical 

MMP correlation for pure CO2-oil [8] has been developed using crude oils with molecular weight 

of C5+ elements (MWC5+) ranged between 180 g/mol and 240 g/mol, their experiment tempe-

ratures were between 32.2 °C and 82.5°C, and ranges of the MMP were between 9.65 MPa 
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and 22 MPa. Cronquist correlation [9] has been established with tested oil gravity ranged from 

23.7 to 44.8°API, temperature ranged from 21.67 to 120.8°C and experimental MMP ranged 

from 7.4 to 34.5 MPa. Yellig & Metcalfe correlation [10] and Orr & Jensen correlation [11] were 

only suitable for reservoir temperatures of  (35 °𝐶 ≤ 𝑇𝑅 ≤ 88.9 °𝐶) and (TR <49°C) respectively. 

Emera-Sarma correlation [12] was limited to 40.8 °C < TR < 112.2 °C, 8.28 < MMP < 30.2MPa 

and 166.2 g/mol < 𝑀WC5+ < 267.5 g/mol. Shokir correlation [13] was elaborated under 32.2°C 

<TR<112.2°C, 6.9<MMP<30.28 MPa and 185 g/mol < 𝑀WC5+ < 268 g/mol. Other correlations 

such as Alston et al. [14], Orr and Silva [15], Glaso’s [16], Lee [17], and Yuan et al. [18] have 

focused directly to a specific oil reservoirs, and this, cannot satisfy the level of comprehen-

siveness and generalization required by various other oil reservoirs where the characteristics 

are different. 

Recently, Artificial Intelligence (AI) has been widely applied in the petroleum field to solve 

many conventional and unconventional problems [19-21]. Among AI methods, artificial neural 

networks (ANNs) is the famous one thanks to its effectiveness. ANNs create models that can 

recognize highly complex and non-straight-forward problems. As the miscibility concept is a 

high complex problem and as ANN is a robust tool in mapping input to output of complex 

relationship, this technique provides an integrated way for predicting CO2 MMP. 

ANN models can present some obvious defects and inaccuracies caused by the defaulted 

training algorithms (like backpropagation BP) that trap in local minima. Hence, in this paper, 

we propose to optimize the weights and thresholds of the neural networks with differential 

evolution algorithm (DE) (which belongs to global meta heuristic optimization algorithms) to 

comprehensively predict MMP in pure CO2-oil systems. On other words, this approach consists 

in building a hybrid ANN-DE-BP with minimum error function. Four parameters are considered 

as the influence factors (inputs) of MMP pure CO2-oil systems: the mole percentage of volatiles 

xvol (includes C1 and N2), the mole percentage of intermediates xint (contains C2–C4, CO2 and 

H2S), the molecular weight of C5+ oil components (MWC5+) and reservoir temperature (TR). 

The model is developed and tested using 105 data collected from published literature and 

covering a wide range of variables. The accuracy of the ANN-DE-BP model is compared with 

MMP values calculated from the ANN-BP (artificial neural network with defaulted back propa-

gation learning) and some well-known correlations. In additions, several statistical indexes 

and graphical error analysis are performed to better judge the robustness and the reliability 

of ANN-DE-BP to predict MMP of pure CO2-oil system. 

2. Artificial Neural Network (ANN) 

In order to find relationship between the input and output data derived from experimental 

works, a more powerful method than the traditional ones are necessary. Artificial Neural 

Network (ANN) is an especially efficient algorithm to approximate any function with finite 

number of discontinuities by learning the relationships between input and output vectors. ANN 

is a mathematical model inspired by the biological neural networks. It is a non-linear mapping 

model and has been successfully applied in many domains [19,22].  

 
Fig. 1. An example of an ANN structure 

It consists of many calculating units called 

nodes, these nodes are inside the layers: 

input data enter the first layer and output 

data exit the last layer. The layers between 

input and output layers are called hidden 

layers. For modeling purposes, the commonly 

used feed-forward ANN architecture namely 

multi-layer perceptron (MLP) may be em-

ployed. MLP involves an input layer, an 

output layer, and one (or more) hidden 

layer (s) with different roles. Each connec-

ting line has an associated weight. Fig. 1 

shows an example of typical 3-layer MLP. 
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The output from a given neuron is calculated by applying a transfer function to a weighted 

summation of its input to give an output, which can serve as input to other neurons, as follows [19]: 

𝑎𝑗𝑘 = 𝑔𝑘(∑ 𝑤𝑖𝑗𝑘𝑎𝑖(𝑘−1) + 𝑏𝑗𝑘
𝑁𝑘−1
𝑖=1 )                  (1) 

where 𝑎𝑗𝑘 are jth neuron outputs from kth layer and 𝑏𝑗𝑘 is the bias weight for neuron j in layer k. 

The model fitting parameters 𝑤𝑖𝑗𝑘 are the connection weights. The nonlinear activation transfer 

functions 𝑔𝑘 may have many different forms. The classical ones are threshold, sigmoid, Gaussian 

and linear function [23]. 
MLP training procedure aims at obtaining suitable weight set 𝑤𝑖𝑗𝑘  and biases that minimizes 

a pre-specified error function such average absolute relative deviation percent (AARD %). The 

back propagation learning algorithm is the most commonly used algorithm. Several back-

propagations training methodologies exist, which include the quasi-Newton backpropagation 

(BFGS), the Powell -Beale conjugate gradient, the Levenberge-Marguardt Algorithm (LMA) 

and others [19]. During the training, both the inputs and the outputs are provided. The network 

then processes the inputs and compares its resulting outputs against the desired outputs. 

Errors are then propagated back through the system, causing the system to adjust the weights 

which control the network. This process occurs over and over as the weights are continually 

tweaked. 

According to [24-25], the convergence of the BP algorithm is highly dependent on the initial 

values of weights and biases. In the literature, using novel heuristic optimization methods or 

evolutionary algorithms is a popular solution to enhance the problems of BP-based learning 

algorithms.  

3. Differential Evolution (DE) 

Differential Evolution (DE) is a stochastic, population-based optimization algorithm 

introduced by Storn and Price in 1996 [26-27]. It is also one of the evolutionary algorithms. DE 

uses the similar genetic algorithm operators: crossover, mutation and selection. The main 

difference in constructing better solutions is that genetic algorithms rely on crossover while 

DE uses mutation operation as a search mechanism and selection operation to direct the 

search toward the prospective regions in the search space. The main steps of this algorithm 

are summarized as follows: 

- Initialization:  An optimization task consisting of D parameters can be represented by a 

D-dimensional vector. In DE, a population of NP solution vectors is randomly created at 

the start. 
- Mutation: For each individual i of a generation G: 𝑥𝑖,𝐺, a mutant vector is produced by:  

𝑣𝑖,𝐺+1 = 𝑥𝑟1,𝐺 + 𝐹 ∗ (𝑥𝑟2,𝐺 − 𝑥𝑟3,𝐺)                   (2) 

where 𝑖, 𝑟1, 𝑟2, 𝑟3 ∈ {1,2, … , 𝑁𝑃: 𝑃𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛 𝑠𝑖𝑧𝑒} are randomly chosen and must be different from 

each other. F is called the mutation factor: it is a random number from [0,2]; and 𝑣𝑖,𝐺+1is 

called donor vector.  

- Recombination (crossover): The parent vector is mixed with the mutated (donor) vector to 
produce a trial vector 𝑢𝑗𝑖,𝐺+1 

𝑢𝑗𝑖,𝐺+1 = {
𝑣𝑖,𝐺+1, 𝑖𝑓  ( 𝑟𝑎𝑛𝑑𝑖𝑗 ≤ 𝐶𝑅) 𝑜𝑟 𝑗 = 𝐼𝑟𝑎𝑛𝑑

𝑥𝑗𝑖,𝐺 , 𝑖𝑓    (𝑟𝑎𝑛𝑑𝑖𝑗 > 𝐶𝑅) 𝑎𝑛𝑑 𝑗 ≠ 𝐼𝑟𝑎𝑛𝑑

              (3) 

where 𝑗 = 1,2, … , 𝐷; 𝑟𝑎𝑛𝑑𝑖𝑗 ∈ [0 1] is the random number; CR is crossover constant ∈ [0 1] and 

𝐼𝑟𝑎𝑛𝑑 ∈ (1,2, … , 𝐷) is a randomly chosen index.  

- Selection:  The child produced after the mutation and crossover operations is evaluated. 

Then, the performance of the child vector and its parent is compared and the better one is 

selected. If the parent is still better, it is retained in the population. 

𝑥𝑖,𝐺+1 = {
𝑢𝑖,𝐺+1, 𝑖𝑓  𝑓(𝑢𝑖,𝐺+1) ≤ 𝑓(𝑥𝑖,𝐺)

𝑥𝑖,𝐺 ,   𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                        
                   (4) 

where f is the fitness function (the case shown in the equation 4 corresponds to minimize the 

fitness function). 
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The implementation of the differential evolution algorithm to optimize the weights and 

biases of ANN is illustrated in Fig. 2. 

 

Fig. 2. Implementation of DE to MMP ANN’s training 

4. Data analysis  

105 data sets are collected from published literature [9-18, 28-34] with a wide range of 

temperatures and oil compositions. Reservoir temperature for this dataset ranged from 34.4 

to 137.2°C, while the molecular weight of the C5+ fraction varied from 136.26 to 391 g/mol. 

Table 1 shows a full statistical description of the collected and used data in the development 

of the model. 

Table 1. Ranges and their corresponding statistical parameters of the input/output data used for deve-
loping the model 

 Variables Max Min Mean SD 

Output MMP (MPa) 38.5 7.93 17.40 6.99 

Inputs 

MWC5+ (g/mol) 391 136.26 205.43 39.65 

TR (°C) 137.22 34.4 74.38 26.11 

xvol (%) 54.3 0 20.43 15.65 

xint (%) 43.5 0 18.77 12.33 

To demonstrate the correlation between MMP and the used independent variables, the 

correlation matrix is implemented [35]. This matrix illustrates the power of a linear relationship 

between two different variables in multi-variables system [35]. The coefficient between two 

variables x and y, is defined by the following formula: 

𝑟𝑥𝑦
𝜎𝑥𝑦

𝜎𝑥𝜎𝑦
                            (5) 
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where 𝜎𝑥 and 𝜎𝑦 are the sample standard deviations, and 𝜎𝑥𝑦 is the sample covariance. 

 

Fig. 3. Correlation coefficient of the independent variables 

Its values are between [-1 1]. 

Two variables are said to be 

positively linearly related if their 

correlation coefficient is close to 

1 and negatively linearly if it is 

close to -1. For values nearby 

zero, it would indicate a weak 

linear relationship between the 

variables. The obtained results 

are shown in Fig. 3.  

The graph certifies that 

reservoir temperature (TR) has 

the highest linearly relation with 

MMP (0.68). Then Molecular 

Weight (MW) of the C5 + and xvol 

% by 0.54 and 0.43, respectively. 

Furthermore, it can be deduced 

that molar  

fraction of the intermediate elements (xint) has a negative linearly relation with MMP which 

means that MMP is high, if xint is low. 

5. Model development 

To improve the convergence conditions during the development of the model, the used 

data are normalized at the interval [-1 1] according to the following equation: 

𝑥𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑 =
2(𝑥𝑖−𝑥𝑚𝑖𝑛)

(𝑥𝑚𝑎𝑥−𝑥𝑚𝑖𝑛)
− 1                      (6) 

where 𝑥𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑 is the normalized value of  𝑥𝑖, 𝑥𝑚𝑎𝑥  𝑎𝑛𝑑 𝑥𝑚𝑖𝑛 are the maximum and minimum 

values of the variable 𝑥 respectively (as shown in Table 1). 

The first step to establish an ANN-DE-BP model to estimate MMP of pure CO2-oil systems 

consists in achieving to a best ANN topology. One hidden layer is employed in our study, as it 

is proven in the literature [36] that a MLP network having only one hidden layer can estimate 

most of nonlinear systems. The number of neurons in the hidden layer is established using 

trial and error method: after a series of optimization processes by monitoring the performance 

of the network until the best network structure is accomplished. The radial basis activation 

function is used as the transfer function from input layer to hidden layer, and the linear 

function is taken as the activation function in the last layer. Then the problem is formulated 

as an optimization problem to find a set of weights and biases of the ANNs that minimizes the 

difference between the predictions and the target values in the training set of data using 

differential evolution algorithm (by following flowchart of Fig. 2). 88 points of the 105 are 

selected randomly and employed in the training process while the remain 17 are used to test 

the model. The features of implemented algorithm are summarized as follows: population 

size: 50, max number of generation: 100 and crossover’s constant: 0.8. All the programming 

tasks developed in this work are carried out using MATLAB® 2016-a computing environment [37]. 

To evaluate the developed model and its predictive performances, it must be compared 

against existing correlations and approaches. This is done through cross plots and a group 

error analysis, using the average absolute percent error (AARD%), standard deviation (SD), 

the correlation factor (R2) and the root mean square error (RMSE). These statistical indexes 

can be mathematically expressed by the following equations: 

𝐴𝐴𝑅𝐷% =
1

𝑁
∑ |

𝑀𝑀𝑃𝑖
𝑒𝑥𝑝

−𝑀𝑀𝑃𝑖
𝑐𝑎𝑙

𝑀𝑀𝑃
𝑖
𝑒𝑥𝑝 |𝑁

𝑖=1 × 100                 (7) 
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𝑆𝐷 = √1
(𝑁 − 1)⁄ ∑ (

𝑀𝑀𝑃
𝑖
𝑒𝑥𝑝

−𝑀𝑀𝑃𝑖
𝑐𝑎𝑙

𝑀𝑀𝑃
𝑖
𝑒𝑥𝑝 )

2
𝑁
𝑖=1                 (8) 

𝑅2 = 1 −
∑ (𝑀𝑀𝑃𝑖

𝑒𝑥𝑝
−𝑀𝑀𝑃𝑖

𝑐𝑎𝑙)
2

𝑁
𝑖=1

∑ (𝑀𝑀𝑃𝑖
𝑐𝑎𝑙−𝑀𝑀𝑃̅̅ ̅̅ ̅̅ ̅)

2𝑁
𝑖=1

                   (9) 

𝑅𝑀𝑆𝐸 =  √
1

𝑁
∑ (𝑀𝑀𝑃𝑖

𝑒𝑥𝑝
− 𝑀𝑀𝑃𝑖

𝑐𝑎𝑙)
2𝑁

𝑖=1                 (10) 

where N represents the number of the measured information, 𝑀𝑀𝑃𝑖
𝑒𝑥𝑝

 is the experimental 

minimum miscibility pressure values, while 𝑀𝑀𝑃𝑖
𝑐𝑎𝑙 is the calculated MMP values which are 

predicted by the developed model. Average value of the MMP data is shown by 𝑀𝑀𝑃̅̅ ̅̅ ̅̅ ̅. 

6. Results and discussion 

Table 2 shows the results of performed sensitivity analysis for investigation of the number 

of neurons in the hidden layer for ANN-BP. In this table, only topologies which have been 

trained several times and show a high degree of accuracy are presented. The optimal 

configuration has been selected by finding the structure which has a high accuracy based on 

the statistical error analysis. It can be clearly seen that 16 is the best number of neurons in 
the hidden layer, and the configuration 4 × 16 × 1  (one input layer containing the inputs 

showed in Table 1, one hidden layer with 16 nodes and one output layer containing one node 

which is MMP) can be considered as an optimal topology in this study. 

Table 2. Sensitivity analysis for various ANN topologies (training data) 

Number of hidden 
neurons 

AARE (%) R2 SD RMSE 

9 8.46 0.9607 0.11 1.87 

10 6.91 0.9743 0.097 1.82 

12 6.99 0.9719 0.093 1.89 

15 7.52 0.9604 0.11 1.88 

16 6.16 0.9681 0.085 1.72 

19 6.37 0.970 0.089 1.74 

Cross plots between output and target values for training and test data of ANN-DE-BP and 

ANN-BP models are illustrated in Fig. 4. For each model, all the predicted values are sketched 

against the experimental values, and therefore across plot is created and compared against a 

unit slope line that shows the perfect model line: the closer the plotted data to this line, the 

higher is the reliability of the model. According to these cross plots, ANN-DE-BP model has 

closer match to the real values. For a deep comparison, Table 3 presents the results of 

performance evaluation through the aforementioned statistical indicators. According to this 

table, ANN-DE-BP has a reliable ability to predict MMP with a total AARD% of 5.92%, RMSE of 

1.47, high correlation coefficient (R2=0.9808) and low standard deviation (SD=0.0817). 

Furthermore, this table depicts that ANN-DE-BP outperforms largely ANN-BP model. 

Table 3. Performance analysis of ANN-BP and ANN-DE-BP 

  R2 AARD (%) RMSE SD 

ANN-BP 

Training (88 data) 0.9681 6.16 1.72 0.085 

Test (17 data) 0.9491 13.88 3.26 0.1681 

All (105 data) 0.9650 7.41 1.97 0.098 

ANN-DE-BP 

Training (88 data) 0.9807 5.17 1.33 0.0745 

Test (17 data) 0.9811 9.81 2.23 0.12 

All (105 data) 0.9808 5.92 1.47 0.0817 
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Fig. 4. Cross-Plots of the Results: (a) MMP measured vs MMP ANN-DE-BP (training + test); (b) MMP 

measured vs MMP ANN-BP (training + test) 

To find better comprehension on the performance of the model, cumulative distribution 

function (CDF) plot of the predicted errors is shown in Fig. 5. In this figure, the error is the 

percent relative error (PRE%) which measures the relative deviation of predicted data from 

the experimental data. Also, details of this figure are presented in Table 4 using concept of 

the probability distributions of the errors. Table 4 and Fig. 5 reveal that 80 % of the ANN-DE-

BP prediction values have an absolute error less than 10%, and only 3% with an absolute 

error up to 20%. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 5. CDF plot of APRE of ANN-DE-BP 

Table 4. Probability distribution of the simple errors for used data 

Error ANN-DE-BP Error ANN-DE-BP 

|𝐴𝑃𝑅𝐸| < 0.16 0.019 |𝐴𝑃𝑅𝐸| <   7.80  0.70 
|𝐴𝑃𝑅𝐸| < 0.53 0.10 |𝐴𝑃𝑅𝐸| < 10.00 0.80 
|𝐴𝑃𝑅𝐸| < 1.00 0.21 |𝐴𝑃𝑅𝐸| < 14.75 0.90 
|𝐴𝑃𝑅𝐸| < 1.50 0.30 |𝐴𝑃𝑅𝐸| < 17.38 0.95 
|𝐴𝑃𝑅𝐸| < 2.65 0.40 |𝐴𝑃𝑅𝐸| < 20.00 0.97 
|𝐴𝑃𝑅𝐸| < 3.70 0.50 |𝐴𝑃𝑅𝐸| < 24.40 1 
|𝐴𝑃𝑅𝐸| < 5.45 0.60   

To investigate and to provide more insight into the validity of the proposed model for MMP 

estimation in pure CO2-oil systems, seven of well-known correlations have been selected for 

comparison. Table 5 shows the results. It can be seen from the analysis of comparison that 
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ANN-DE-BP proves its ability in MMP prediction of the pure CO2-oil systems with high precision 

and lowest average absolute deviation among all correlations and ANN with backpropagation 

learning.  

Table 5. Comparison of ANN-DE-BP performances against existing correlations 

Model / correlation R2 AARD (%) RMSE SD Max AARD (%) 

ANN-DE-BP 0.9808 5.92 1.47 0.0817 24.40 

ANN-BP 0.9650 7.41 1.97 0.098 34.10 

Cronquist 0.9043 16.42 4.23 0.2085 69.13 

Lee 0.6393 19.73 6.05 0.2782 98.68 

Yelling Metcalfe 0.6771 18.01 6.06 0.2341 66.09 

Orr-Jensen 0.6331 20.17 6.71 0.2548 78.71 

Alston et al. 0.8546 19.15 6.05 0.2640 91.54 

Emera-Sarma 0.8868 14.02 3.92 0.1867 56.82 

Shokir 0.8574 12.58 3.45 0.1674 57.94 

Finally, for utilizing of our best-established model (i.e. ANN-DE-BP) and exact reproducing 

its results, the detailed information (its weight and bias matrixes) are reported in Table 6. This 

model contains one input layer (containing the inputs as arranged in Table 1), one hidden 

layer (it contains 16 nodes) and one output layer (contains one node) which is MMP. The radial 

basis activation function is used as the transfer function from input layer to hidden layer, and 

the linear function is taken as the activation function in the last layer. The normalization of 

dataset followed is expressed in equation (6) with respect to the bounds shown in Table 1.  

Table 6. Weights and biases of the ANN-DE-BP 

Neurons Weight values of connections between input and hidden layer 

1 -2.6435 -2.8768 -0.4822 0.3454 
2 -2.4828 -0.6234 -0.8255 0.3686 
3 0.1751 -0.6750 3.6811 -0.6295 
4 2.3005 -2.4885 -1.1044 -1.3275 
5 0.3134 0.6956 -3.1345 0.9178 
6 -2.6354 -0.1521 1.5074 -2.2200 
7 0.0636 -0.2535 0.3671 -1.0719 
8 -2.4234 -0.3067 -0.6915 1.0496 
9 3.9934 -2.9587 -0.1020 0.9007 
10 2.5631 -2.6922 -0.8403 -0.4032 
11 0.2141 0.3385 -0.8303 -1.1127 
12 3.3936 3.5477 0.2842 0.3107 
13 -1.0396 1.0211 -0.1439 -2.7147 
14 4.1151 2.8660 0.5029 1.7354 
15 1.4882 -1.8420 -3.7362 -1.2947 
16 2.1720 0.9226 1.8268 0.0507 

 

  

 

Weight values of connections between hidden and output layer 

-0.5965 0.3559 1.1612 -0.3095 -1.5506 -0.3876 2.9475 -0.9274 0.0064 1.2707 3.9655 2.4085 -1.5664 -0.3002 -0.3924 -1.8314 

Biases of the hidden layer 

-2.8664 3.4227 2.0303 -1.9878 -1.6632 0.7837 0.9189 -1.8503 2.1158 -0.7092 -1.5149 2.3326 2.5369 3.5869 0.3510 3.3695 

Biases of the output layer 

-0.8889 
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7. Conclusion 

In this study, a new approach to predict MMP of pure CO2-oil systems is proposed by 

optimizing artificial neural network with differential evolution (DE). This latter is used to 

optimize weights and biases of a pre-established neural networks. The results generated by 

this model i.e. ANN-DE-BP, are then compared with the experimental results, those generated 

by neural network with backpropagation learning and those generated by the existing 

approaches. The results show an excellent agreement between the model predictions and 

experimental data (R2>0.98), and this model outperforms all other approaches. Furthermore, 

ANN-DE-BP provides a considerable improvement over previous proposed correlation with 

broader applicability in terms of accuracy and independent variable ranges. 

List of symbols 

MMP minimum miscibility pressure (MPa) 
𝑀WC5+ molecular weight of C5+ elements (g/mol) 

xvol  mole percentage of volatiles (includes C1 and N2) 
xint  mole percentage of intermediates (contains C2–C4, CO2 and H2S) 

TR  reservoir temperature (°C) 
ANN artificial neural network 

DE differential evolution 
BP back propagation  
AARD average absolute percent error (%) 
SD standard deviation 
R2 the correlation factor  
RMSE root mean square error 
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