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Abstract 

A quantitative structure–property relationship (QSPR) study was performed to develop models those 

relate the structures of 65 Kovats retention index (RI) of adamantane derivatives. Molecular 
descriptors derived solely from 3D structures of the molecular compounds. A genetic algorithm was 
also applied as a variable selection tool in QSPR analysis. The models were constructed using 52 
molecules as training set, and predictive ability tested using 13 compounds. Modeling of RI of 
Adamantane derivatives as a function of the theoretically derived descriptors was established by 
multiple linear regression (MLR). The usefulness of the quantum chemical descriptors, calculated at the 
level of the DFT theories using 6-311+G** basis set for QSAR study of adamantane derivatives was 

examined. The use of descriptors calculated only from molecular structure eliminates the need to 
experimental determination of properties for use in the correlation and allows for the estimation of RI 
for molecules not yet synthesized. Application of the developed model to  testing set of 13 drug 
organic compounds demonstrates that the model is reliable with goo predictive accuracy and simple 
formulation. The prediction results are in good agreement with the experimental value. A multi-
parametric equation containing maximum Four descriptors at B3LYP/6-31+G** method with good 

statistical qualities (R2
train=0.913, Ftrain=97.67, R2

test=0.770, Ftest=3.21,  Q2
LOO=0.895, R2

adj=0.904, 
Q2

LGO=0.844) was obtained by Multiple Linear Regression using stepwise method.      

Keywords: Adamantane derivatives, Kovats retention indices(RI), genetic algorithm, MLR, QSPR. 
 

1. Introduction 

Diamondoids are classed with organic nanostructures; therefore, adamantane derivatives 

have become particularly popular with the development of nanotechnologies. The applications 

of adamantane derivatives are diverse: from antiviral drugs to nanorobots and molecular 

machines [1-3]. Particular attention is given to the chromatographic behavior of adamantane 

derivatives, because various chromatographic methods allow not only separation of multi 

component mixtures of isomers and structurally related framework hydrocarbons and their 

derivatives, but also qualitative and quantitative analysis of these mixtures [4]. Quantitative 

structure property relationships (QSPR), mathematical equations relating chemical properties 

such as acidity, electrochemistry, reactivity and chromatographic behavior to a wide variety 

of structural, topological and electronic features of the molecules [5], have been widely used 

in the field of chromatographic sciences [6–13]. Quantitative structure–retention relationships 

(QSSRs) represent statistical models which quantify the relation between the structure of 

the molecule and chromatographic retention indices of the compound, allowing the prediction of 

retention indices of novel compounds. QSPR on the RI have been reported for different types 

of organic compounds. Acevedo-Martinez et al. [14-18], developed linear and nonlinear models 

to study the Kovats retention indices of the immine family using topological, topographical 

and quantum chemical descriptors Correlations between the sorption and structural 

characteristics of adamantane derivatives were found based on the QSPR (Quantitative 

Structure Property Relationships) method. The success of a QSAR study depends on choosing 

robust statistical methods for producing the predictive model and also the relevant structural 

parameters for expressing the essential features within those chemical structures. Nowadays, 
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genetic algorithms (GA) are well known as interesting and widely used methods for variable 

selection [19]. In a QSAR study the model must be validated for its predictive value before it 

can be used to predict the response of additional chemicals. Validating QSPR with external 

data (i.e. data not used in the model development), although demanding, is the best method 

for validation [20–21]. In the present work, the data splitting was performed randomly and 

was confirmed by the factor spaces of the descriptors. Finally, the accuracy of the proposed 

model was illustrated using the following: leave one out, bootstrapping and external test set, 

cross-validations and Y-randomization techniques. 

2. Methodology 

2.1 Data set 

The property data used in this study are the Kovats retention index (RI) of of the set of 

65 Adamantane derivatives [22]. The data set was randomly divided into two subsets: the 

training set containing 52 compounds (80%) and the test set containing 13 compounds 

(20%). The training set was used to build a regression model, and the test set was used to 

evaluate the predictive ability of the model obtained. The activity data for the complete set 

of compounds are presented in Table 1.To derive QSAR models, an appropriate representation 

of the chemical structure is necessary. For this purpose, descriptors of the structure are 

commonly used.  

Table 1. Experimental values of RI for adamantane derivatives training set  

Name Exp. Pred Ref.     

adamantane 1118 1131 22 

1 3 dimethyl adamantine 1151 1198 22 

1-fluoro adamantine 1159 1259 22 

2-methylene adamantine 1160 1172 22 

1,3,5 -trimethyl adamantine 1163 1226 22 

2-methyl adamantine 1196 1219 22 

1 2-dimethyl adamantine 1236 1231 22 

1-ethyl adamantine 1260 1221 22 

2 2-dimethyl adamantine 1269 1274 22 

1-ethyl-3,5 di methyl adamantine 1279 1291 22 

3-ethyl-1-adamantanol 1283 1348 22 

3-methyl-1-adamantanol 1283 1290 22 

3 5-dimethyl-1-adamantanol 1295 1290 22 

1-chloroadamantane 1298 1295 22 

3,5,7-trimethyl-1-adamantanol 1304 1318 22 

2-adamantanon 1320 1322 22 

2-chloro adamantine 1342 1342 22 

1-propyl adamantine 1347 1298 22 

2-methyl-2-adamantanol 1348 1397 22 

2-isopropyl adamantine 1349 1391 22 

2-propyl adamantine 1371 1391 22 

1-bromo adamantine 1382 1376 22 

1-hydroxy methyl adamantine 1402 1393 22 

1-chloromethyladamantane 1404 1367 22 

2-isobuthyl adamantine 1416 1383 22 

3-ethyl-5,7-dimethyl -1-adamantanol 1421 1395 22 

3-5 dimethyl 1 hydroxy methyl adamantine 1425 1440 22 

5-7-dimethyl1-3 adamantandiol1. 1438 1458 22 

1-buthyl adamantine 1443 1383 22 

methyl-(1-adamanthyl) ketone 1443 1407 22 

methyl-(2-adamanthyl)ketone 1445 1387 22 

2-ethyl-2-adamantanol 1446 1445 22 

2-buthyl adamantine 1465 1416 22 

adamantane-2-carboxylic acid methyl ester 1467 1464 22 
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Name Exp. Pred Ref.     

methyl ester of 3,5 di  methyl adamantane1-carboxilic acid 1467 1510 22 

1-bromomethyl adamantine 1488 1494 22 

2-methyl-1-hydroxy methyl adamantine 1490 1438 22 

3-isopropyl-1-adamantanol 1506 1406 22 

adamantane -1-carboxylic acid ethyl ester 1508 1459 22 

Methyl esters of 2-methyl adamantane -1-carboxylic acid 1512 1520 22 

Adamantane-2-carboxylic acid ethyl ester 1529 1557 22 

ethyl-(1-adamanthyl)ketone 1529 1491 22 

adamantane-1-carboxylic acid iso propyl ester 1532 1585 22 

adamantane-1-carboxylic acid tert-buthyl ester 1556 1679 22 

2-isobuthyl-2-adamantanol 1570 1547 22 

Methyl ester of -3-ethyl adamantane -1-carboxylic asid 1579 1544 22 

3-buthyy-1-adamantanol 1595 1528 22 

esters of adamantane 1-carboxylic acid propyl ester 1603 1630 22 

2-buthyl-2-adamantanol 1620 1596 22 

adamantane -1-carboxylic acid sec-buthyl ester 1631 1632 22 

adamantane -1-carboxylic acid iso buthyl ester 1658 1596 22 

di methyl ester of 5,7-di methyl adamantane -1-3 di carboxylic acid 1769 1809 22 

2.2 Molecular descriptor generation 

To derive QSAR models, an appropriate representation of the chemical structure is necessary. 

For this purpose, descriptors of the structure are commonly used. These descriptors are generally 

understood as being any term, index or parameter conveying structure information. Commonly 

used descriptors in the QSAR analysis are presented in Table 2. 

Table 2. Experimental values of RI for adamantane derivatives test set  

Name EXP Test Ref.    

1-methyladamantane 1137 1148 22 

2-fluoro adamantine 1182 1281 22 

1-adamantanol 1268 1374 22 

2-ethyl adamantine 1284 1269 22 

2-adamantanol 1329 1403 22 

1-isopropyl adamantine 1358 1284 22 

3 5-dimethyl -1-bromo adamantine 1401 1433 22 

2-bromoadamantane 1426 1464 22 

esters of adamantane1-carboxylic acid methyl ester 1449 1444 22 

3-propyl-1-adamantanol 1495 1447 22 

2-propyl-2-adamantanol 1526 1474 22 

3-(1-adamanthyl)pentane 1559 1430 22 

propyl-(1-adamanthyl) ketone 1609 1538 22 

Some of the descriptors are obtained directly from the chemical structure, e. g. constitutional, 

geometrical, and topological descriptors. Other chemical and physicochemical properties 

were determined by the chemical structure (lipophilicity, hydrophilicity descriptors, electronic 

descriptors, energies of interaction). In this work, we used Gaussian 03 for ab initio calculations. 

DFT method at 6-31+G** were applied for optimization of adamantane derivatives and 

calculation of many of the descriptors. At first Adamantane derivatives were built by Hyperchem 

software and some o the descriptors such as surface area, hydration energy, and refractivity 

were calculated through it. The rest of the descriptors were obtained of Gaussian calculations.  

A large number of descriptors were calculated by Gaussian package and Hyperchem software. 

One way to avoid data redundancy is to exclude descriptors that are highly intercorrelated 

with each other before performing statistical analysis. Reduced multi co-linearity and redundancy 

in the data will facilitate selection of relevant variables and models for the investigated endpoint. 

Variable-selection for the QSAR modeling was carried out by stepwise linear regression 

method. A stepwise technique was employed that only one parameter at a time was added 

to a model and always in the order of most significant to least significant in terms of F-test 
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values. Statistical parameters were calculated subsequently for each step in the process, so 

the significance of the added parameter could be verified. The goodness of the correlation is 

tested by the regression coefficient (R2), the F-test and the standard error of the estimate 

(SEE). The test and the level of significance, as well as the confidence limits of the regression 

coefficient, are also reported. The squared correlation coefficient, R2, is a measure of the fit 

of the regression model. Correspondingly, it represents the part of the variation in the observed 

(experimental) data that is explained by the model. 

2.3 Genetic algorithm 

Genetic algorithms (GAs) are governed by biological evolution rules [23]. These are stochastic 

optimization methods that have been inspired by evolutionary principles. The distinctive 

aspect of a GA is that it investigates many possible solutions simultaneously, each of which 

explores a different region in the parameter of space [24]. To select the most relevant descriptors, 

the evolution of the population was simulated [25-27]. The first generation population was 

randomly selected; each individual member in the population was defined by a chromosome 

of binary values and represented a subset of descriptors. The number of the genes at each 

chromosome was equal to the number of the descriptors. A gene was given the value of 1, if 

its corresponding descriptor was included in the subset; otherwise, it was given the value of 

zero. The number of the genes with the value of 1 was kept relatively low to have a small 

subset of descriptors [28]. As a result, the probability of generating 0 for a gene was set greater 

(at least 60 %) than the value of 1. The operators used here were the crossover and mutation 

operators. The application probability of these operators was varied linearly with a generation 

renewal (0–0.1 % for mutation and 60–90 % for crossover). The population size was varied 

between 50 and 250 for the different GA runs. For a typical run, the evolution of the generation 

was stopped when 90% of the generations took the same fitness. The fitness function used 

here was the leave-one-out cross-validated correlation coefficient, Q2 LOO. The GA program 

was written in Matlab 6.5 [29]. 

3. Results and discussion 

In a QSAR study, generally, the quality of a model is expressed by its fitting ability and 

prediction ability, and of these the prediction ability is the more important. In order to build 

and test the model, a data set of 65 compounds was separated into a training set of 52 

compounds, which were used to build the model and a test set of 13 compounds, which 

were applied to test the built model. With the selected descriptors, we have built a linear 

model using the training set data, and the following equation was obtained: 

RI = -4.45754 (±1.161528) σ9  -80.1305  (±11.72555)  ΔGCYCLO +  5.768715 (±0.292762) M 

- 121.607 (±42.44063) MC9 +  0.072961 (±0.015957)  HF +177.4361 (±112.5648)   

(B3LYP/6-31+G**) 

R2
train=0.914 Ftrain=97.674        R2

test=0.770 Ftest = 3.214  R2
adj=0.904     

Q2
LOO=0.895  Q2

LGO=  0.84451 Ntrain= 52,     Ntest = 13 

In this equation, N is the number of compounds, R2 is the squared correlation coefficient, 

Q2
LOO and Q2

LGO  are the squared cross-validation coefficients for leave one out, bootstrapping 

and external test set respectively, RMSE is the root mean square error and F is the Fisher F 

statistic. The figures in parentheses are the standard deviations. The built model was used 

to predict the test set data and the prediction results are given in Table 1. and the test results 

are given in Table 3. As can be seen from Table 1, the calculated values for the RI are in 

good agreement with those of the experimental values. The predicted values for RI for the 

compounds in the training and test sets using equation RI were plotted against the experimental 

RI values in Figure 1.and the comparison between Retention Index using prediction and the 

experimental .A plot of the residual for the predicted values of RI for both the training and 

test sets against the experimental RI values are shown in Figure 2. As can be seen the model 

did not show any proportional and systematic error, because the propagation of the residuals 

on both sides of zero are random. The real usefulness of QSAR models is not just their ability 

to reproduce known data, verified by their fitting power (R2), but is mainly their potential for 

predictive application. For this reason the model calculations were performed by maximizing 
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the explained variance in prediction, verified by the leave-one-out cross-validated correlation 

coefficient,Q2
LOO maximizing the explained variance in prediction, verified by the leave-one-

out cross-validated correlation coefficient, Q2LOO. To avoid the danger of over fitting and the 

possibility of overestimating the model predictivity by using Q2LOO procedure, as is strongly 

recommended for QSAR modeling. The Q2 LOO and Q2 GLO for the MLR model are shown in 

Equation RI. This indicates that the obtained regression model has a good internal and 

external predictive power. 

Table 3. The calculated descriptors used in this study. 

Descriptors Symbol Abbreviatio

n 

Descriptors Symbol Abbreviation 

Quantum 

chemical 

descriptors 

Molecular Dipole 

Moment 

MDP 

Quantum 

chemical 

descriptors 

difference between 

LUMO and HOMO 

E GAP 

Molecular 

Polarizability 

MP Hardness 

[ η=1/2 

(HOMO+LUMO)] 

Η 

Natural Population 

Analysis 

NPA Softness ( S=1/ η 

) 

S 

Electrostatic 

Potential0 

EP Electro negativity 

[χ= -1/2 (HOMO–

LUMO)] 

Χ 

Highest Occupied 

Molecular Orbital 

HOMO El Electro philicity 

(ω=χ2 /2 η ) 

Ω 

Lowest 

Unoccupied 

Molecular Orbital 

LUMO Mullikenl Chargeg MC 

 

 

Chemical 

properties 

 

 

Partition 

Coefficient 

Log P  

 

Chemical 

properties 

 

Molecule surface 

area 

SA 

Mass M Hydration Energy HE 

Molecule volume V Refractivity REF 

 

 
 

Fig.1. The predicted versus the experimental 

RI by MLR 

Fig. 2. The residual versus the experimental LogP 

by GA-MLR. (See colour version of this figure 

online at www.informahealthcare.com/enz) 

Also, in order to assess the robustness of the model, the Y-randomization test was applied in 

this study. The dependent variable vector (RI) was randomly shuffled and The new QSAR 

models (after several repetitions) would be expected to have low R2 and Q2 LOO values (Table 4). 

If the opposite happens then an acceptable QSAR model cannot be obtained for the specific 

modeling method and data. 
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Table 4. The R2 train and Q2 LOO values after several Y-randomization tests 

NO R2
train Q2

LOO 

1 0.1045 0.0312 

2 0.000022 0.0976 

3 0.0939 0.0614 

4 0.0042 0.1282 

5 0.0457 0.0570 

6 0.0340 0.1927 

7 0.0060 0.1442 

8 0.2991 0.0125 

9 0.0175 0.1700 

10 0.0251 0.0608 

The MLR analysis was employed to derive the QSAR models for different adamantane 

derivatives. MLR and correlation analyses were carried out by the statistics software SPSS 

(Table 5). 

Table 5. The correlation coefficient existing between the variables used in MLR with B3lyp/6-

31+G** method. 

 HF MC9 M ΔGCYCLO σ9 

HF  1 0 0 0 0 

MC9  0.048869 1 0 0 0 

M  0.39506 0.245901 1 0 0 

ΔGCYCLO  0.099875 0.22142 0.226936 1 0 

σ9  0.17506 0.485565 0.070032 0.04617 1 

 

 
S 

 

Fig. 3. The comparison between properties (RI) using  experimental and prediction 

Series 1: Values of log P were obtained by using prediction. Series 2: Values of log P were 

obtained by using experimental methods. 

3.1. Interpretation of descriptors 

The QSPR developed indicated that Nuclear magnetic Resonance (σ9), free energy solvation 

(ΔGCYCLO), mulliken charge (MC), Hartee-fuck energy (HF) compound Kovats retention index. 

Positive values in the regression coefficients indicate that the indicated descriptor contributes 

positively to the value of RI, whereas negative values indicate that the greater the value of 

the descriptor the lower the value of RI. In other words, increasing the σ9,ΔGCYCLO and MC will 

decrease RI and increasing the HF and M increases extent of RI of the adamantane derivatives. 

The standardized regression coefficient reveals the significance of an individual descriptor 

presented in the regression model. 
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4. Conclusion 

In this article, a QSAR study of 65 adamantane derivatives was performed based on the 

theoretical molecular descriptors calculated by the GAUSSIAN software and selected. The built 

model was assessed comprehensively (internal and external validation) and all the validations 

indicated that the QSPR model built was robust and satisfactory, and that the selected 

descriptors could account for the structural features responsible for the adamantane derivatives 

property   of the compounds. The QSPR model developed in this study can provide a useful 

tool to predict the RI of new compounds and also to design new compounds with high RI. 
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