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Abstract 

Drillstring vibration is a significant problem during drilling operations that can pose severe 
consequences such as downhole tool failure, borehole instability, loss of mechanical energy, and 
decreased rate of penetration, leading to an increase in non-productive time and drilling costs. 

Meanwhile, drillstring vibration monitoring using downhole sensors faces challenges, such as downhole 
data transmission and high sensor costs. Hence, this research employed machine learning techniques, 
namely, linear regression (LR), k-nearest neighbors (KNN), decision trees (DT), extreme gradient 
boosting (XGBoost), and random forest (RF), to monitor downhole vibrations using surface drilling 
parameters. The study passed through different phases: data collection, preprocessing, analysis, 
model development, model predictability evaluation, and model deployment. A dataset of 10,470 
measurements was utilized to train and evaluate the developed models. The accuracy of these models 

in predicting downhole vibrations was assessed using statistical metrics such as root mean square error 
(RMSE) and coefficient of determination (R2). The results of the training and testing phases showed a 
high degree of accuracy for the KNN, XGBoost, and RF models. Furthermore, the developed models 
were validated using an unseen dataset comprising 2,618 measurements, which confirmed the 
effectiveness of KNN, XGBoost, and RF models in the detection of downhole vibrations, with R2 ranging 

from 0.88 to 0.96. Overall, this research shows the ability of the developed models for real-time 

prediction of downhole vibrations using surface drilling data without the need for expensive downhole 
sensors, resulting in reduced drilling costs. 

Keywords: Drillstring vibration; Surface drilling parameters; Machine learning; Real-time; Drilling optimization. 

1. Introduction

Downhole drillstring vibration is recognized as a significant issue encountered during drilling

operations, leading to severe wear and tear to downhole equipment, frequent tool failures, a 

decrease in the rate of penetration (ROP), and an increase in the occurrence of non-productive 

time, which in turn results in escalated drilling costs. Additionally, it induces instability in the 

borehole and diminishes the amount of mechanical energy transferred to the drill bit [1-2]. 

Hence, the drilling team has a vital role during the drilling operation by diligently monitoring 

and diagnosing the drill string vibration signs to minimize any potential consequences [3]. The 

drilling process relies on the transmission of axial and rotational power to the drill bit, enabling 

it to penetrate the rock formation. Nevertheless, the bit's contact with the rocks, the interac-

tion between the drillstring and the borehole walls, the eccentric rotation of the drillstring, and 

the occurrence of hole washouts may cause or exacerbate vibrations on the drillstring and the 

bit [4-5]. Downhole drillstring vibrations are commonly categorized into three main types: axial, 

lateral, and torsional vibrations. The axial vibration propagates along the drillstring due to 

upward and downward oscillations along its axis, resulting in the bit bounce phenomenon. This 

issue is particularly prevalent when drilling shallow vertical holes with large diameters, espe-

cially when utilizing tri-cone bits. Bit bounce can lead to detrimental effects such as damage 

to the downhole tools, drill bits, bottom hole assembly (BHA), and frequent fluctuations in the 
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weight on bit (WOB). Consequently, ROP and overall drilling performance are negatively im-

pacted [4,6]. Torsional vibration arises due to the non-uniform and restricted rotation of the 

drillstring, causing drillstring connection fatigue, leading to drillstring twist-off, damage to the 

bit and stabilizer cutters and gauges, and reduced drilling efficiency [7-8]. This type of vibration 

occurs when the torque required to rotate the drillstring and the bit is insufficient, causing the 

drillstring to momentarily stall (stick) until enough energy is regained to overcome resistance, 

allowing the drillstring to resume rotation (slip) at 2 to 15 times its average rotational speed [3,9]. 

This mechanism is known as stick-slip. Torsional vibration is prone to happen in highly devi-

ated or extended-reach wells, hard formations, and deep wells. Another factor contributing to 

vibrations is the aggressive design of polycrystalline diamond compact (PDC) bits and the 

utilization of suboptimal drilling parameters like excessive WOB [4,10]. Lateral vibration is the 

third mode of drillstring vibration, in which the direction of vibration is perpendicular to the 

axis of the drillstring. The main source of lateral vibration is the drillstring rotation along an 

axis other than the wellbore axis, known as the whirl phenomenon [11]. These conditions can 

be initiated due to poor stabilization of BHA, hole washouts, and BHA resonance at critical 

rotational speeds [1,12]. The backward whirl is the most damaging vibration type, leading to 

destructive lateral shocks between the borehole and drillstring, which in turn results in down-

hole tool failures, rapid fatigue in drillstring and BHA connections, broken drill bit cutters, and 

enlarged boreholes [4,13]. Over the past years, several dynamic drillstring models and ap-

proaches have been established to optimize the drilling practice to be followed during down-

hole vibration occurrence and model drillstring vibration to diminish its associated conse-

quences[14-15]. These approaches include modifying the drill bits’ design and optimizing drilling 

parameters such as weight on bit, drillstring rotational speed (DRS), drilling torque (T), mud 

flow rate (Q), and rate of penetration [5,16]. The drilling team must follow a proficient mitiga-

tion practice for each mode of drillstring vibrations to increase drilling efficiency and minimize 

any negative consequences. 

1.1. Machine learning and drilling engineering  

Machine learning (ML) involves the study of computer algorithms that are designed to em-

power systems with the capability to learn autonomously through experience [17]. This field is 

widely acknowledged as a branch of artificial intelligence. Due to advancements in ML tech-

niques, computers have acquired the ability to make decisions autonomously [18]. In recent 

years, machine learning and artificial intelligence have been extensively utilized in various 

applications within the oil and gas industry [19–22]. The utilization of ML applications has a 

profound influence on drilling operations through the creation of exceptional models. These 

models have effectively minimized non-productive time and costs by addressing various as-

pects, including the rate of penetration prediction [23–25], early detection of kicks [26-27], and 

the determination of rheological parameters of drilling fluids [28-29]. Additionally, ML applica-

tions have found relevance in numerous other areas within the drilling industry. 

1.2. Machine learning techniques for downhole vibration detection  

Recently, numerous sophisticated data analytics techniques and ML models have been de-

veloped to estimate and detect downhole vibrations. Baumgartner and van Oort [30] analyzed 

high-frequency downhole data via ML techniques to identify downhole vibrations. The model 

shows a success rate exceeding 90% when tested on high-frequency field datasets. Zhao et 

al. [16] utilized a variety of ML techniques in their study, including modified symbolic aggregate 

approximation, dynamic time wrapping, hierarchical clustering, pattern recognition, and clas-

sification, to analyze drilling data and identify abnormal drilling events such as stick-slip, whirl-

ing, stuck pipe, and loss of circulation. Zha and Pham [31] established an advanced deep learn-

ing model to analyze surface drilling parameters and predict the corresponding downhole stick-

slip vibrations. The model's training and validation process involved the utilization of a dataset 

consisting of 1400 measurements of surface and downhole drilling data. Surface data included 

drilling torque, tension, rotary speed, WOB, and tri-axial acceleration, while downhole data 
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consisted of torque, RPM, and acceleration. The model demonstrated a validation accuracy of 

99% and a precision of 97%. Millan et al. [3] designed two models to detect and categorize 

the severity levels of stick-slip and lateral shocks using support vector machines (SVM) and 

bagged decision tree classification methods. The models were trained using surface drilling 

parameters such as WOB, T, hook load, DRS, and their associated vibration types and intensity 

levels. The stick-slip model was trained with 260 measurements, and the results showed an 

accuracy of 98% coefficient of determination. On the other hand, the lateral shocks model 

was trained with a larger dataset of 865 measurements and exhibited a slightly lower accuracy 

of 93% coefficient of determination. Ignova et al. [32] created a classification model using a 

fast Fourier transform (FFT), followed by two unsupervised ML techniques, a k-means cluster 

analysis algorithm, and a principal component analysis (PCA) pattern recognition technique. 

The model underwent a training process using 2048 measurements of high-frequency shock 

data to classify anomalies in drilling events effectively. Okoli et al. [2] employed five ML algo-

rithms to classify downhole lateral and axial vibrations using primary surface drilling parame-

ters T, ROP, and WOB. The results revealed that the classification ML for the intra-BHA runs 

achieved an accuracy level ranging from 50% to 80% in predicting the severity of downhole 

vibrations. However, the inter-BHA predictability experienced a notable reduction, which can 

be related to various operational events and wellbore conditions. Hegde et al. [10] developed 

a robust ML model to classify the severity of stick-slip in drilling operations. The stick-slip 

index, which measures the intensity of stick-slip caused by drilling vibrations, is categorized 

as either high or low through the utilization of ML classification algorithms like logistic regres-

sion, support vector machines, random forests, gaussian mixture models, and discriminant 

analysis. Training of the model involved input data from drilling operation parameters such as 

WOB, Q, RPM, ROP, and torque-on-bit. Among the various algorithms utilized, the random 

forest algorithm demonstrated superior performance with an accuracy of 90%. Gupta et al. 
[33] utilized the random forest and gradient boosting ML algorithms to develop a stick-slip 

classification model using drilling parameters such as T, ROP, and WOB as inputs. While the 

model demonstrates satisfactory performance for the low, medium, and high stick-slip classes, 

it exhibits subpar accuracy in predicting the severe class. The overall accuracy of the model is 

62%, but the accuracy for the low stick-slip class is a high of 80%. Saadeldin et al. [34] devel-

oped a model to identify the three modes of vibration in real-time by employing an artificial 

neural network. The model evaluation demonstrated exceptional predictive capabilities, as 

indicated by statistical metrics that revealed a coefficient of correlation exceeding 0.95. Fur-

thermore, the model exhibited minimal errors, with an average absolute percentage error of 

less than 3.5% when comparing actual and predicted values. Alsaihati and Alotaibi [35] em-

ployed K-nearest neighbors, logistic regression, and random forests machine learning tech-

niques to assess the intensity of downhole lateral and torsional vibrations during surface hole 

drilling. A dataset comprising real-time field measurements from 10 wells was utilized to de-

velop predictive models. The input variables consisted of surface drilling data and daily drilling 

reports, whereas the downhole vibrations encountered by these drilling parameters were used 

as output variables. The results revealed that the logistic regression model excelled in its 

precision in predicting the severity of downhole lateral and torsional vibrations, surpassing the 

performance of other models. 

According to prior studies, the integrated detection of the three modes of vibration using 

ML research is currently insufficient. The main goal of this research is to establish comprehen-

sive ML models for integrated prediction of drillstring vibration by utilizing surface drilling 

parameters, mud weight, and temperature obtained from rig sensors, allowing real-time de-

tection of axial, lateral, and stick-slip vibrations. To accomplish this goal, five machine learning 

techniques, namely linear regression (LR), k-nearest neighbor (KNN), decision tree (DT), ex-

treme gradient boosting (XGBoost), and random forest (RF), have been employed to generate 

and evaluate the accuracy of these models for the prediction of downhole vibrations. The 

outcomes of this research will empower the drilling crew to frequently identify drillstring vi-

brations and apply the appropriate drilling practices to mitigate their consequences, reducing 

non-productive time and supporting drilling operations optimization. 
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2. Methodology 

2.1. Study approach  

The process of developing machine learning models for predicting downhole vibrations in-

volves a systematic process that starts with gathering the data, data preprocessing and anal-

ysis, constructing the model, and model performance evaluation before finally deploying the 

model and saving the most optimal outcomes for vibration predictions. Figure 1 depicts the 

sequential flowchart of the steps involved in developing the models.  

 

Figure 1. ML model development workflow diagram. 

2.2. Data collection and preparation 

Field drilling data was gathered from five wells located in the western desert of Egypt. The 

data was collected while drilling a 12 ¼” intermediate hole to eliminate the effect of hole size 

change. These five wells were selected from two neighboring fields to minimize the influence 

of formation lithology and mineral composition variations. The 12 ¼” hole in the selected wells 

was drilled using 6 blades and 16 mm cutter-size PDC bits with identical bit designs, resulting 

in a negligible impact on the bit-lithology interaction. Additionally, the intermediate section of 

these wells was drilled using water-based mud with consistent mud properties.  

The collected drilling data consists of surface drilling parameters employed as inputs in the 

model, along with their corresponding downhole vibration measurements, which serve as the 

desired output of the ML model. Several rig sensors are employed to measure these surface 

drilling parameters, including weight on bit (WOB), drillstring rotational speed (DRS) in revo-

lutions per minute (RPM), drilling torque (T), mud flow rate (Q), standpipe pressure (SPP), 

rate of penetration (ROP), as well as hole depth and other drilling fluid properties like mud 

weight (M.Wt) and mud temperature (M.T). Downhole BHA sensors are used to measure 

downhole drillstring vibration parameters such as lateral vibration, axial vibration, stick-slip 

percentage (SS%), and vibration count (CPS). The vibration count indicates the number of 

vibration shocks that occurred per second. The stick-slip percentage represents the severity 

of torsional vibrations and is computed from the drill bit rotation sensor [36]. The stick-slip 

percentage is calculated as follows: 

𝑆𝑆% =
|∆ 𝐵𝑖𝑡 𝑅𝑃𝑀|

𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝐵𝑖𝑡 𝑅𝑃𝑀
 (1) 

Adequate data preprocessing plays a crucial role in improving the efficiency of machine 

learning models. Since the quality of the data used is a critical factor for ML models to detect 

physical phenomena and the presence of noise within a dataset has the potential to impact 

the accuracy of predictions made by ML algorithms [37-38], the collected data was preprocessed 

using techniques like Z-score and box plots. This preprocessing phase eliminated outliers, 

missing data, unreasonable sensor readings, duplicates, and negative values, thereby enhanc-

ing the overall performance of ML algorithms. Figure 1 and Figure 3 show lateral vibration 

values before and after outliers were removed using the box plot technique. 
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Figure 1. Lateral vibration values before removing 

outliers. 

Figure 3. Lateral vibration values after removing 

outliers. 

After the collected data was directed to the cleaning and preprocessing phase, a dataset 

comprising 10470 data points was obtained. The dataset contained ten input variables and 

four output variables. Each ML model underwent training with 70% of the data points, while 

the remaining 30% were allocated for model evaluation. Subsequently, the trained models 

underwent a further testing phase using an unseen dataset of 2618 data points obtained from 

a nearby well while drilling a 12 ¼’’ intermediate hole to validate the model prediction capa-

bility for new wells. 

2.3. Data analysis  

The preprocessed data was subjected to statistical analysis, as shown in Table 1. Further-

more, Figure 4 shows the density plots that were utilized to visually represent the numeric 

distribution of each parameter within the dataset.  

The extensive range of values for the parameters, as indicated by the maximum and min-

imum values, is beneficial in improving the efficacy of the model training phase. The hole 

depth ranged from 1146 to 3002.8 m, the weigh on bit from 1.5 to 55.8 Klb, the drillstring 

rotational speed from 56.5 to 147.6 RPM, the drilling torque from 0.92 to 16.98 Klb.ft, the 

mud flow rate from 580.8 to 860 gallons per minute (GPM), the standpipe pressure from 

1560.4 to 3187.6 psi, the rate of penetration from 2.7 to 88 m/hr, the mud weight from 9 to 

9.6 ppg, and the mud temperature from 37.2 to 74.2 °C. The associated downhole vibrations 

ranged from 1.1 to 6.8 g, 0.5 to 2.9 g, 1.5 to 249.1 %, and 2 to 208.6 CPS for lateral vibration, 

axial vibration, stick-slip percentage, and vibration count respectively. Figure 5 illustrates the 

pair plots for the dataset features to visualize the relationship between each other. The pair 

plot showed that the correlation between the model parameters is nonlinear and very complex. 

A correlation matrix was employed to determine the correlation coefficient among all input and 

output model variables, as illustrated in Figure 2. The correlation matrix demonstrated the 

complicated relationships among model parameters, emphasizing the importance of employ-

ing machine learning techniques to model these parameters and identify the interrelationships 

between them accurately. 
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Figure 4. Density plot for each parameter in the dataset after the preprocessing phase. 

Table 1 Data statistical analysis. 

SP 
Depth 

(m) 

WOB 

(Klb) 

DRS 

(RPM) 
T (lb.ft) 

Q 

(GPM) 

SPP 

(psi) 

ROP 

(m/hr) 

M.Wt 

(ppg) 

M.T. 

in (℃) 

M.T. 

out (℃) 

LV. 

(g) 

AVib. 

(g) 

SS% 

(%) 

VC 

(CPS) 

Min 1146.0 1.5 56.5 922.1 580.8 1560.4 2.7 9.0 32.8 37.2 1.1 0.5 1.5 2.0 

25% 1566.2 17.4 98.3 8641.4 686.3 2176.9 17.8 9.1 43.6 51.5 2.0 1.5 26.6 7.6 

50% 2228.6 27.1 106.4 11146.7 777.8 2431.3 30.9 9.4 47.7 52.1 2.0 2.0 54.8 15.4 

75% 2669.8 36.8 137.7 14178.6 794.9 2635.9 47.8 9.4 49.2 68.6 2.2 2.0 120.3 35.7 

Max 3002.8 55.8 147.6 16979.2 860.0 3187.6 88.0 9.6 59.4 74.2 6.8 2.9 249.1 208.6 

Av 2152.1 26.8 112.9 11058.6 749.9 2399.4 34.1 9.3 46.3 57.3 2.4 1.8 72.9 29.0 

Std 580.7 12.4 20.9 3511.6 63.4 317.8 19.0 0.2 4.4 10.4 1.0 0.5 53.1 33.6 

SP- Statistical parameter; Av- average; LV- lateral vibration; AVib-axial vibration; VC- vibration count  
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Figure 5. Pair plots for dataset features. 

2.4. Model development  

Machine learning techniques have an extensive range of applications in the oil and gas 

sector, especially in drilling operations. One of these applications is the real-time detection of 

downhole drillstring vibrations, this aids drilling engineers in adapting the drilling parameters 

to eliminate the consequences caused by these vibrations. Machine learning algorithms such 

as Linear Regression, k-nearest neighbor, decision tree, extreme gradient boosting, and ran-

dom forest were employed to train models and evaluate their capability for downhole vibration 

prediction. 
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Figure 2. Correlation matrix for model parameters. 

Linear regression is a popular machine learning approach that predicts continuous numer-

ical values. It seeks to create a linear correlation between a dependent variable and one or 

more independent variables [39]. The model assumes that the relationship between the varia-

bles may be represented by a straight line, making it a simple but effective tool for prediction 

and analysis. One of LR's most important strengths is its interpretability. The model provides 

a linear equation that directly links the vibration response (dependent variable) to a collection 

of drilling parameters (independent variables) that are thought to impact vibrations. However, 

LR's fundamental drawback is its assumption of linearity. Drill string vibrations are frequently 

affected by complicated, non-linear interactions among drilling factors. As a result, LR models 

may fail to capture the entire range of vibration behavior. This constraint requires the devel-

opment of alternative machine learning approaches capable of handling such complexities. 

K-nearest neighbor is an instance-based or non-generalizing algorithm that is applicable 

for both regression and classification tasks. It is a non-parametric algorithm that relies on a 

similarity measure, such as distance functions like Euclidean or Hamming distance. Initially 

introduced by Fix and Hodges in 1951, this method is now commonly known as the k-nearest 

neighbors method [40]. The K-NN algorithm is widely regarded as one of the simplest ML al-

gorithms, and it is very effective when dealing with large training datasets [35]. KNN stores all 

training samples in memory, unlike alternative learning algorithms that allow discarding the 

training data after the model is built [41]. Many parameters have a direct effect on the perfor-

mance of the KNN model; however, the two most crucial ones are the number of nearest 

neighbors (n_neighnors) and the weights function. In this study, the number of nearest neigh-

bors is set equal to 5, and the weights function is used as ''uniform'', indicating that every 

point within the neighborhood is given equal weight. 

Decision tree models provide a basic and understandable method for machine learning. 

They partition the feature space using simple decision rules, making them useful for deter-

mining the link between drilling parameters and vibration dynamics in the drill string [2]. De-

spite their simplicity, decision trees have the capability to effectively handle a diverse array of 
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data and provide insight into the importance of features. However, they are prone to overfit-

ting, especially when dealing with noisy or multidimensional data [42]. Many parameters affect 

the performance of the decision tree model, such as the maximum depth of the tree 

(max_depth), which is used as ''none'', the strategy used to choose the split at each node 

(splitter), which is used as ''best'', and the minimum number of samples required to split an 

internal node (min_samples_split), which is set equal to 2. 

Extreme gradient boosting is a machine learning technique like having a team of experts 

work together. Each "expert" learns from the mistakes of the others, resulting in a super-

accurate prediction of vibrations. XGBoost, an extension of gradient boosting, has received 

great praise for its superior predictive capability and adaptability. Its distinguishing features, 

including innovative regularization algorithms and efficient parallel processing, make it capa-

ble of handling complicated, high-dimensional datasets [43]. In terms of drill string vibration 

prediction, XGBoost's capacity to describe complex interactions between drilling parameters 

and vibration dynamics makes it an appealing option. Its interpretability increases its utility 

by providing useful insights into the underlying causes of vibrations. 

Random forest is an ensemble-based machine learning algorithm that performs well for 

low-dimensional drilling data [20]. It is a type of meta-estimator. It works by fitting multiple 

decision tree regressors on different parts of the dataset and then averaging their predictions. 

This technique helps enhance predictive accuracy and prevent overfitting. Trees in the forest 

use the best-split strategy. Random forests are highly effective when dealing with noise, multi-

attribute data, and tuning algorithms [44]. The RF model has different parameters, such as the 

number of trees in the forest (n-estimators), which is set equal to 100; the minimum number 

of samples required to split an internal node (min_samples_split), which is set equal to 2; and 

the minimum number of samples needed to be at a leaf node (min_samples_split), which is 

set equal to 1. 

As the interpretation of ML models is very complex, it is essential to utilize explanatory ML 

methods to determine the primary features influencing the vibration model’s output. The SHAP 

(SHapley Additive exPlanations) technique is one of these methods derived from game theory, 

plays a crucial role in enhancing the clarity and interpretability of ML models, and discloses 

the significance of each input feature on the predicted vibration values [45]. The SHAP value 

provides insight into the extent to which a feature value has influenced the prediction of a 

specific instance in relation to the average prediction of the dataset. The shapely values are 

demonstrated through the utilization of waterfall and local bar plots, as shown in Figure 7, 

where the length of each bar corresponds to the SHAP value of a particular feature. The plots 

indicate that depth, mud temperature, WOB, and T are the main features that affect the vi-

bration model prediction.  

 
Figure 7. Feature importance using SHAP values, represented by the waterfall plot and the local bar plot. 
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2.5. Model evaluation  

The accuracy of each model was evaluated through a statistical analysis of their respective 

errors. This analysis involved measuring the root mean square error (RMSE) and coefficient 

of determination (R2) values between the actual field measurements for vibrations and the 

predicted vibration values generated by the models. These statistical parameters, as defined 

in equations (2) and (3), were utilized to quantify the predictive capability of the models. A 

smaller RMSE value indicates a higher level of accuracy in downhole vibration prediction by 

the developed models. Furthermore, the R2 value ranges from 0 to 1, with a higher value 

approaching 1, indicating a stronger match between the model's predictions and the actual 

data points. 

Root mean square error (RMSE) 

𝑅𝑀𝑆𝐸 = √∑ (𝑦𝑖 − 𝑦𝑝)
2𝑛

𝑖=1

𝑛
 (2) 

Coefficient of determination (R2) 

𝑅2 = 1 − 
∑ (𝑦𝑖 − 𝑦𝑝)

2𝑛
𝑖=1

∑ (𝑦𝑖 − (
1
𝑛

∑ 𝑦𝑝
𝑛
𝑖=1 ))

2

𝑛
𝑖=1

 
(3) 

where n is the number of data points; yi is the actual value of data point I; and yp is the 

predicted value returned from the model. 

3. Results and discussion   

The developed ML models were trained using 7329 data points, which accounted for 70% 

of the dataset. Subsequently, 3141 data points, representing 30% of the dataset, were em-

ployed for testing these models to evaluate the models' performance in real-time downhole 

vibration prediction. 

The training phase's evaluation parameters for developed models are presented and meas-

ured in Figure 8 and Table 2. It is obvious that the DT model overfits the training data, indi-

cating that the model may have excessively learned the training data. The LR model exhibited 

poor performance, as indicated by an RMSE of 22.89 and an R2 value of 0.42. Conversely, the 

KNN, XGBoost, and RF models demonstrated outstanding performance in predicting downhole 

vibration during the training phase, achieving R2 values of 0.94, 0.98, and 0.99, respectively.  

The testing phase of the models demonstrated great levels of accuracy for the XGBoost and 

RF models, as indicated in Figure 9 and Table 2. The performance of the LR model was not 

satisfactory, with an RMSE value of 23.17 and an R2 value of 0.40. The KNN model showed 

higher accuracy than the LR, with an RMSE value of 12.20 and an R2 value of 0.86. XGBoost 

and RF Models showed exceptional accuracy in integrated prediction of the downhole vibration, 

with an R2 higher than 0.9. The RF model outperformed the other models with an RMSE value 

of 9.05 and an R2 value of 0.93. 

The developed models were subjected to an additional testing step (validation phase) to 

evaluate the accuracy of their predictability using a blind dataset of 2618 data points collected 

from a nearby well. Figure 10shows the high degree of match between the actual vibration 

measurement of the unseen dataset and the predicted values, with R2 ranging from 0.88 to 

0.96, as detailed in Table 2. Among the models, the RF model demonstrated the highest level 

of accuracy in real-time prediction of downhole vibration measurements. 
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Figure 8. Actual vibration test data versus the predicted one during the training phase of the developed 
vibration models, where (a) is for LR, (b) is for KNN, (c) is for DT, (d) is for XGBoost, and (e) is for RF 
models. 
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Figure 9. Actual vibration test data versus the predicted one during the testing phase of the developed 
vibration models, where (a) is for LR, (b) is for KNN, (c) is for DT, (d) is for XGBoost, and (e) is for RF models. 

Table 2. Results of developed models. 

Developed 
models 

Dataset 
Accuracy measurement 

MSE RMSE R2 

LR 

Training 523.76 22.89 0.42 

Testing 536.87 23.17 0.4 

Validation 527.94 22.98 0.42 

KNN 

Training 74.85 8.65 0.94 

Testing 148.77 12.2 0.86 

Validation 129.93 11.31 0.88 

DT 

Training 0 0 1 

Testing 94.21 9.71 0.91 

Validation 69.13 8.31 0.95 

XGBoost 

Training 33.8 5.82 0.98 

Testing 99.9 9.9 0.92 

Validation 79.26 8.9 0.95 

RF 

Training 9.09 3.02 0.99 

Testing 81.83 9.05 0.93 

Validation 60.89 7.8 0.96 
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Figure 10. Actual vibration test data versus the predicted one during the validation phase of the devel-
oped vibration models, where (a) is for LR, (b) is for KNN, (c) is for DT, (d) is for XGBoost, and (e) is for 

RF models. 
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4. Conclusion 

This study has developed various machine learning models to predict different types of 

downhole vibrations, like lateral, axial, and stick-slip, and to identify their specific character-

istics. The models were developed using only surface drilling data as their input. The machine 

learning models were trained and tested using data gathered while drilling a 12 ¼” hole. This 

data included surface drilling parameters along with their corresponding downhole vibrations.  

Downhole vibration prediction significantly impacts the optimization of drilling operations 

as it allows for the implementation of appropriate drilling parameters, prevents downhole tool 

failures, and minimizes non-productive time. A dataset comprising 10470 data points was 

utilized to train and test LR, KNN, DT, XGBoost, and RF ML algorithms for integrated prediction 

of downhole vibrations using only surface drilling data. Overfitting was observed in the deci-

sion tree model during the training phase. The results showed that XGBoost and RF models 

have a high degree of accuracy in predicting downhole vibration parameters, with an R2 value 

greater than 0.92 and an RMSE less than 10 during the training and testing phases. 

The developed models underwent another testing step with an unseen dataset to check the 

performance of these models in downhole vibration prediction, and the accuracy recorded 

showed R2 higher than 0.95 for the XGBoost and RF models. The LR model exhibited the 

poorest performance compared to the other developed models during the training and evalu-

ation phases, with an R2 value of 0.42 during the validation phase. The RF model showed 

superior accuracy in downhole vibration prediction, surpassing the other models with an R2 

value of 0.96 and an RMSE of 7.8. 

Nomenclature 

BHA Bottom Hole Assembly Q Flow Rate 

CPS Count Per Second R2 Coefficient of Determination 

DRS Drillstring Rotational Speed RF Random Forest 

DT Decision Tree RMSE Root Mean Square Error 

GPM Gallons per Minute ROP Rate of Penetration 

KNN k-nearest neighbor RPM Revolutions Per Minute 

LR Linear Regression SHAP SHapley Additive exPlanations 

M.T Mud Temperature SPP Standpipe Pressure 

M.Wt Mud Weight SS% Stick-Slip Percentage 

ML Machine learning T Drilling Torque 

MSE Mean Square Error WOB Weight on Bit 

PDC Polycrystalline Diamond Compact XGBoost Extreme Gradient Boosting 
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