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Abstract 
The consumption of fossil fuels has experienced a significant increase in recent decades, despite the 
various challenges it poses, including air pollution, environmental degradation, health issues, and 
limited resources. In order to mitigate these concerns and capitalize on the environmental benefits and 
availability of alternative energy sources, biofuels, such as biodiesel, have emerged as viable 
substitutes for fossil fuels. Biodiesel production, however, is a complex process that involves identifying 
intricate nonlinear relationships between input and output data. To effectively design, manage, control, 
optimize, and monitor biodiesel production systems, accurate and efficient modeling tools like machine 
learning (ML) and artificial intelligence (AI) are necessary. Among the different modeling methods used 
in biodiesel production, machine learning has shown great potential in providing highly accurate 
predictions. Inspired by the autolearning and self-improving capabilities of the human brain, machine 
learning techniques offer superior performance in solving the complex challenges associated with 
(trans)esterification processes, physicochemical properties, and real-time monitoring of biodiesel 
systems. Applications of machine learning in the production phase encompass optimization and 
estimation of biodiesel quality, determination of process conditions and quantities, estimation of 
emissions composition and temperature, and analysis of motor performance. Key input parameters 
include oil and catalyst types, methanol-to-oil ratio, catalyst concentration, reaction time, domain, and 
frequency, while the output parameter of interest is fatty methyl acid ester. This paper presents a 
comprehensive review that discusses the advantages, disadvantages, and diverse applications of 
machine learning technologies in biodiesel production. It primarily focuses on recently published 
articles spanning from 2010 to 2021, with the aim of providing valuable insights for decision-making, 
optimization, modeling, control, monitoring, and forecasting of biodiesel production processes. By 
leveraging machine learning techniques, biodiesel producers can enhance their operational efficiency, 
improve product quality, and make informed decisions to ensure the sustainability and effectiveness 
of biodiesel production. 
Keywords: Biodiesel production; Machine learning; Artificial intelligence; Biofuel; Energy conversion efficiency. 

1. Introduction

In recent years, biodiesel has attracted a lot of attention and importance as a sustainable
and eco-friendly substitute for traditional fossil fuels [1-2]. Reducing greenhouse gas emissions, 
improving energy security, and using sustainable feedstock sources are just a few of the pos-
sible advantages of producing and using biodiesel [3-5]. In comparison to conventional petro-
leum-based diesel fuel, biodiesel is noted for having fewer carbon dioxide (CO2) emissions. It 
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is created using resources that can be replenished, like vegetable oils and animal fats, which 
can help to lessen greenhouse gas emissions and slow down climate change [6-7]. Additionally, 
dangerous chemicals like sulfur and particulate matter, which are linked to air pollution and 
related health hazards, are present at lower amounts in biodiesel. Production of biodiesel 
lessens reliance on fossil fuels and can help countries achieve energy security [8,112]. Biodiesel pro-
duction can improve domestic energy output and lessen reliance on imported petroleum by 
using locally accessible feedstock sources, such as agricultural crops or waste materials [111-113]. 
Additionally, sustainable biodiesel feedstock production can help agricultural communities 
flourish economically and in terms of rural development [9-10]. In recent decades, achieving 
universal social, economic, and industrial progress has been significantly hampered by the 
ongoing need for affordable and efficient energy to meet rising consumption [11-12]. It is clear 
that the current energy supply situation cannot sustainably cover the needs of the entire world 
community [111-113]. Fossil-based fuels, notably coal, oil, and gas, have dominated the world's 
energy supply for more than 150 years [13]. 

The overall amount of energy consumed worldwide has significantly increased, going from 
109,858 TW-hours (TWh) in 2000 to 127,0232 TWh, 151,100 TWh, and 163,709 TWh in 2005, 
2015, and 2021, respectively [14]. Global population increased from 6.1 billion in 2000 to 6.5 
billion in 2005, 7.4 billion in 2015, and 7.9 billion in 2021, accordingly (UN, 2022). The sus-
tained increase in global energy use can be partly attributed to the faster population growth. 
Oil, coal, and gas contributed 33.1 percent, 27 percent, and 24.3 percent, respectively, to the 
world's energy supply as of 2019, which accounts for approximately 84.3 percent of it. Re-
newable energy sources accounted for only 11.3 percent of the global energy supply [14]. 
Waste products and byproducts from various industries, such as used cooking oil, animal fats 
from slaughterhouses, or crop residues, can be used in the production of biodiesel. This pre-
sents a chance to lessen waste production, support recycling and resource efficiency, and 
support the circular economy's guiding principles. Biodiesel manufacturing leads to a more 
sustainable and effective use of resources by transforming waste materials into a valuable fuel 
source [15-16]. Around the world, governments and regulatory organizations have recognized 
the potential of biodiesel production and have put in place laws and incentives to encourage 
its use. These consist of mix requirements, tax breaks, research funding, and renewable en-
ergy targets. An environment that is beneficial for research, development, and application of 
cutting-edge technology in biodiesel production processes is created by the support of policy-
makers and the availability of supportive regulatory frameworks. The ability to optimize and 
enhance different areas of biodiesel production is the relevance of integrating machine learn-
ing technologies into the process [17-18]. Machine learning methods can aid improve biodiesel 
quality prediction, reaction parameter optimization, process management, and feedstock se-
lection [18-19]. Machine learning can help make biodiesel production more cost-effective and 
sustainable by utilizing data-driven models and predictive analytics. This will increase yield, 
lower costs, and guarantee consistent product quality [18-19]. 

Technologies like machine learning have become effective tools in many businesses, alter-
ing procedures and decision-making through data-driven methods [20]. Due to its ability to 
increase process efficiency, optimize production parameters, and improve overall product 
quality, machine learning's use in the manufacturing of biodiesel has attracted a lot of atten-
tion recently [19]. This in-depth overview examines how machine learning technologies are 
used to improve biodiesel production, emphasizing their importance and potential advantages. 
The study of creating algorithms and models that can learn from data and make predictions 
or judgments without being explicitly programmed is known as machine learning, a subfield 
of artificial intelligence (AI). Systems can use it to automatically recognize patterns, draw 
conclusions, and generate predictions or judgments based on incoming data. Large-scale data 
processing, complicated pattern detection, and important insights from machine learning al-
gorithms can all lead to advancements and improvements. The use of machine learning tech-
nology to improve the efficiency, sustainability, and quality of biodiesel production processes 
has a huge potential [17]. Large datasets from multiple biodiesel manufacturing phases can be 
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examined by machine learning algorithms, which can find hidden patterns, discover correla-
tions, and produce useful predictive models [18]. Operators are then able to adjust process 
parameters, increase overall production performance, and make data-informed decisions. At 
several stages of the biodiesel production process, machine learning can be used to address 
particular problems and spur advancements. These applications include: 
- Feedstock selection: Machine learning algorithms may assess various feedstocks' qualities 

and forecast their potential for biodiesel synthesis, optimizing feedstock choice and lower-
ing costs. 

- Reaction optimization: By anticipating the best catalyst concentrations, reaction conditions, 
and durations, machine learning can enhance transesterification reactions to increase bio-
diesel yield and decrease undesirable byproducts. 

- Process monitoring and control: In order to maintain process stability and improve perfor-
mance, machine learning algorithms can monitor key process parameters in real-time, spot 
abnormalities or deviations, and offer proactive control measures. 

- Quality prediction: The quality of the end product can be improved by using machine learning 
models to forecast biodiesel quality metrics such as viscosity, density, and cetane number 
based on input data. 
While machine learning technologies have many advantages, there are several obstacles 

to their successful application in the biodiesel industry. These include the accessibility of high-
quality and representative datasets, integration with current production systems, interpreta-
bility of complicated machine learning models, and the requirement for domain expertise to 
properly use and interpret the results [21-22]. 

The effectiveness and potential of machine learning in the manufacture of biodiesel have 
been demonstrated in a number of studies, contributing to significant improvements in the 
industry. Notably, the research done by Garg and Jain and Moayedi et al. [23-24] has made 
major contributions to the use of machine learning technologies in the manufacture of bio-
diesel. A study by Garg et al. [23] examined how machine learning models may be used to 
predict the characteristics of biodiesel. To forecast crucial biodiesel qualities like density, vis-
cosity, and flash point, they created regression models based on different machine learning 
algorithms. The models were trained to correctly predict these qualities based on input varia-
bles using a large dataset of biodiesel samples with known properties. The study showed that 
machine learning models could accurately predict the qualities of biodiesel, providing a quicker 
and more affordable substitute for conventional laboratory testing procedures. On the other 
hand, Ong et al. [25] looked at the use of machine learning to optimize the production param-
eters for biodiesel. To identify the ideal circumstances for transesterification processes, they 
used an optimization algorithm with machine learning methods. They created prediction algo-
rithms that may direct the selection of the ideal reaction conditions by examining a sizable 
dataset of process parameters and biodiesel yield. The study showed how machine learning 
may be used to optimize biodiesel production, increase yield, and lower production costs. 
These studies demonstrate how machine learning has been successfully applied to the manu-
facturing of biodiesel and show how it has the potential to improve a number of different areas 
of the procedure [19,26]. Researchers can create precise forecasts, enhance process parame-
ters, and boost overall production efficiency by utilizing machine learning algorithms and mod-
els. These developments have a big impact on the biodiesel business and have the potential 
to boost output, cut costs, and improve sustainability. While the works by Garg and Jain and 
Kolakoti et al. [23-24] have made significant contributions, it is crucial to note that there is still 
continuing research in the area of machine learning in biodiesel production. In order to further 
increase the efficiency and effectiveness of machine learning technologies in the biodiesel 
manufacturing processes, efforts are continuously made to investigate new methodologies, 
algorithms, and data-driven approaches. 

This comprehensive overview aims to give a thorough analysis of the application of machine 
learning technologies in the production of biodiesel. It investigates various machine learning 
techniques and algorithms, applications, and potential effects on process improvement, cost 
cutting, and sustainability. It also talks about the field's difficulties, constraints, and future 
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directions while indicating areas that could use more study and improvement. The manufac-
ture of biodiesel can gain from data-driven insights, increased process effectiveness, and im-
proved product quality by utilizing the power of machine learning technologies. The thorough 
overview seeks to aid in the biodiesel industry's comprehension and implementation of ma-
chine learning, supporting its transition into a more effective, long-lasting, and environmen-
tally friendly energy source. Therefore, it is essential to examine how machine learning tech-
nologies are being used in the biodiesel production process in order to comprehend the devel-
opments, difficulties, and potential advantages that these technologies can bring to the indus-
try, ultimately assisting in the shift to a more sustainable and cleaner energy future. 

2. Biodiesel production process 

2.1. Overview of traditional biodiesel production methods 

Traditional biodiesel manufacturing techniques have been used for many years and consist 
of a number of tried-and-true procedures. These processes typically involve a transesterifica-
tion reaction to produce biodiesel from spent cooking oil, animal fats, or vegetable oils [1,28]. 
An outline of the main steps in producing traditional biodiesel is provided below: Preparing the 
feedstock is the first stage in the typical biodiesel production process. Obtaining vegetable 
oils, animal fats, or used cooking oil from reputable sources is required for this. To guarantee 
the quality and purity of the oil, feedstock may go through pre-treatment procedures such as 
filtration, degumming, or eliminating contaminants. The transesterification reaction is the 
main step in the classic biodiesel synthesis process. Triglycerides (found in the feedstock) are 
chemically transformed into biodiesel through a reaction with an alcohol, often methanol or 
ethanol, in the presence of a catalyst like sodium hydroxide or potassium hydroxide [1,28]. As 
a byproduct of this reaction, glycerin is separated, and biodiesel is created. To make it easier 
to separate the glycerin and biodiesel after the transesterification procedure, the mixture is 
allowed to settle. Centrifugation or gravity settling can be used to improve separation. After 
being separated, the biodiesel goes through washing procedures to get rid of any contami-
nants, catalyst residues, or water that may still be present [29-30]. After washing, the biodiesel 
is normally dried to remove any moisture that may have remained. Drying can be accom-
plished in a number of ways, including vacuum drying and desiccants. Additionally, the bio-
diesel is often filtered to get rid of any contaminants or particulates that could degrade its 
quality. Traditional biodiesel production techniques incorporate quality control checks to guar-
antee the final product satisfies the required criteria. To ascertain whether biodiesel samples 
match regulatory criteria and industry standards, important metrics including viscosity, den-
sity, flash point, acid value, and other specifications are examined [31-32]. Then, for usage in 
a variety of applications, certified biodiesel can be utilized as a renewable fuel or combined 
with petroleum diesel [33]. The biodiesel industry is built on the widespread adoption of tradi-
tional biodiesel production techniques [34-35]. Even though these techniques have been proven 
successful, ongoing research and development is being done with the aim of improving the 
production procedure, increasing efficiency, and investigating alternative feedstocks and cat-
alysts to further increase the sustainability and commercial viability of biodiesel production. 

2.2. Challenges and limitations of conventional approaches 

Challenges and limitations of conventional biodiesel production approaches: 
Although standard biodiesel production methods have been utilized extensively, they also have 
some drawbacks that may restrict their effectiveness, sustainability, and scalability [36]. The 
following are some of the main issues with using traditional biodiesel production techniques: 

2.2.1. Feedstock availability and cost 

For the manufacturing of biodiesel, conventional methods mainly rely on edible vegetable 
oils like soybean oil, canola oil, or palm oil. The economic viability and sustainability of bio-
diesel production are threatened by the scarce supply and unstable prices of these feedstocks. 
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Concerns regarding the moral ramifications and potential effects on food security are also 
raised by the competition between the production of food and fuel [37-39]. 

2.2.2. Feedstock diversity and quality variations 

The composition and quality of different feedstocks vary, which can have an impact on the 
effectiveness of the transesterification reaction and the overall production of biodiesel. Having 
trouble getting the best conversion and product quality might be caused by inconsistent feed-
stock quality, such as fluctuating levels of free fatty acids, moisture content, or contaminants [40]. 
For conventional biodiesel production, securing a steady and high-quality feedstock supply 
continues to be a considerable difficulty. 

2.2.3. Energy and resource intensity 

The transesterification process, which involves heating, mixing, and separation procedures, 
is one phase in the traditional biodiesel production process that frequently requires considerable 
energy inputs. These energy-intensive procedures add to the overall carbon footprint of the 
manufacture of biodiesel [36,41]. Additionally, using a lot of water for washing and separating might 
put a burden on water supplies in some areas, especially when water shortage is an issue. 

2.2.4. Waste disposal and glycerin utilization 

Glycerin is a byproduct of the conventional transesterification process. It can be difficult to 
properly dispose of or use this glycerin. Inadequate methods of treatment or disposal might 
result in environmental pollution and problems with waste management [42-43]. For conven-
tional biodiesel production, it is still difficult to come up with economically sensible and long-
lasting uses for glycerin byproducts. 

2.2.5. Production efficiency and scale-up 

It might be challenging to scale up biodiesel production using traditional methods. Main-
taining continuous product quality, enhancing reaction conditions for higher volumes, and 
controlling intricate supply chains are challenges [44]. The rising demand for biodiesel might 
not always be supplied by conventional techniques, which might necessitate substantial ex-
penditures in infrastructure and technological advancements to obtain increased production 
capabilities [45-46]. 

2.2.6. Environmental impact 

Although standard biodiesel manufacturing methods still have some negative effects on the 
environment, biodiesel is typically regarded as a more environmentally friendly fuel than fossil 
fuels [47]. Land use changes, potential deforestation brought on by the development of feed-
stock crops, waste disposal-related water contamination, and energy use in manufacturing 
processes are a few of these. The sustainability of biodiesel production over the long run 
depends on reducing these environmental effects and implementing sustainable procedures. 

2.3. Potential benefits of integrating machine learning technologies 

There are a number of potential advantages to incorporating machine learning technology 
into the biodiesel manufacturing process, which can greatly improve productivity, sustainabil-
ity, and overall performance. Among the main advantages are: 

2.3.1. Process optimization 

Large amounts of data from the biodiesel production processes can be analyzed using ma-
chine learning algorithms, which can then be used to spot intricate patterns and relationships 
that may be difficult to spot using more conventional techniques [19]. Machine learning can 
increase conversion efficiency, optimize biodiesel yield, and decrease the generation of unde-
sirable byproducts by optimizing process variables like reaction conditions, catalyst concen-
trations, and feedstock compositions [48]. Cost reductions, lower resource usage, and en-
hanced process performance can all result from this optimization. 
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2.3.2. Predictive analytics 

Based on input factors including feedstock composition, reaction parameters, and process 
circumstances, machine learning models can be created to forecast biodiesel quality charac-
teristics like viscosity, density, flash point, and cetane number [19]. Due to the early discovery 
of potential quality problems made possible by these predictive models, timely changes and 
interventions are possible. Machine learning increases the marketability and dependability of 
biodiesel while also maintaining constant product quality, resulting in higher consumer satis-
faction and a greater degree of regulatory compliance. Machine learning models can be de-
veloped to forecast the qualities of biodiesel, such as viscosity, density, flash point, and cetane 
number. The models can be generated based on input information such as feedstock compo-
sition, reaction parameters, and process circumstances [19]. These prediction models allow for 
the early identification of potential quality issues, which enables prompt adjustments and in-
terventions. Machine learning boosts the biodiesel's marketability and dependability while also 
preserving a consistent level of product quality, leading to increased consumer satisfaction 
and a higher level of regulatory compliance. 

2.3.3. Real-time monitoring and control 

To find anomalies, deviations, or unfavorable situations, machine learning algorithms can 
examine real-time data from sensors and process monitoring systems. As a result, proactive 
decision-making and control strategies are made possible, enabling operators to quickly re-
solve problems and improve process performance [49]. Process stability, downtime, and overall 
operational efficiency are all improved through real-time monitoring and control. 

2.3.4. Data-driven decision-making 

Data-driven decision-making is made possible in the manufacture of biodiesel using ma-
chine learning algorithms. Operators can make more educated decisions by using historical 
data to acquire insights into production trends, patterns, and correlations [19,50]. This can 
involve maintaining inventory levels, forecasting maintenance needs, and fine-tuning manu-
facturing schedules, among other things. Data-driven decision-making increases resource al-
location, cuts costs, and operational efficiency [51]. 

2.3.5. Advanced fault detection and maintenance 

Equipment used in the manufacture of biodiesel can benefit from using machine learning 
techniques for proactive maintenance and issue finding [19]. Machine learning algorithms can 
find patterns suggestive of probable equipment breakdowns or maintenance requirements by 
examining sensor data and historical maintenance records. This makes it possible to schedule 
preventive maintenance, which lowers unplanned downtime, increases equipment reliability, 
and lowers repair costs [52]. 

2.3.6. Sustainability and feedstock optimization 

The selection and use of biodiesel feedstocks can be sustainably optimized with the use of 
machine learning [18]. Machine learning algorithms can suggest the most environmentally 
friendly and economically advantageous feedstock sources by examining data on feedstock 
availability, composition, and market circumstances. This increases the sustainability of bio-
diesel production overall by encouraging responsible sourcing, lowering dependency on finite 
resources, and supporting the use of non-food feedstocks. 

The industry could be revolutionized by incorporating machine learning technology into 
biodiesel manufacturing processes that increase process efficiency, improve product quality, 
optimize resource use, and lower operational costs [53]. These advantages make machine 
learning an appealing tool for the biodiesel business, enabling its transformation towards a 
more effective, eco-friendly, and financially viable energy source. They also come with the 
promise for enhanced scalability and sustainability. 
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3. Fundamentals of machine learning and applications in biodiesel production 

3.1. Introduction to machine learning concepts and algorithms 

Within the broader subject of artificial intelligence, machine learning has become a potent 
discipline that enables computers to learn from data and make predictions or judgments with-
out being explicitly programmed [54]. It entails the creation of algorithms and models that can 
recognize patterns, draw conclusions, and decide wisely based on given data. Machine learning 
is based on the idea of developing models that can make precise predictions or judgments 
using new, unforeseen data by training algorithms on old data. In order to produce insightful 
knowledge, this learning process entails drawing out significant patterns, correlations, and 
trends from the data. 

3.1.1. Supervised learning 

One of the fundamental subfields of machine learning is supervised learning. In this 
method, input examples are linked to appropriate target labels or outcomes, and the algorithm 
is trained on labeled data. The algorithm picks up generalization skills from the labeled data 
and uses them to predict or categorize brand-new, untainted data points. 

3.1.2. Unsupervised learning 

Another crucial area of machine learning is unsupervised learning, which focuses on finding 
structures or patterns in unlabeled data. Contrary to supervised learning, the algorithm is not 
given any predetermined labels or results. Instead, without any external instruction, the al-
gorithm probes the data to find underlying structures, groupings, or linkages. 

3.1.3. Feature selection and data preprocessing 

A critical stage in machine learning is feature selection, which entails locating and choosing per-
tinent features or variables from the input data that are most helpful to the learning job. In order 
to ensure that the data is adequate for machine learning algorithms, appropriate data preprocessing 
techniques are frequently used, such as addressing missing data, normalization, or scaling. 

3.1.4. Common machine learning algorithms 

There are various machine learning algorithms used for different types of learning tasks. 
Some commonly used algorithms include: 
- Decision trees: Tree-like models that make decisions based on a series of questions or conditions. 
- Random forests: Ensemble models composed of multiple decision trees, providing improved 

accuracy and robustness. 
- Support vector machines (SVM): Algorithms that classify data points by finding an optimal 

hyperplane that separates different classes. 
- Naive bayes: Probabilistic algorithms based on Bayes' theorem, commonly used for classification 

tasks. 
- K-nearest neighbors (KNN): An algorithm that classifies data points based on the majority 

vote of their nearest neighbors. 

3.1.5. Neural networks and deep learning  

Neural networks are effective machine learning models because they were inspired by the 
way the human brain is organized. Neural networks with numerous hidden layers are the focus 
of the machine learning field of deep learning. Deep learning has excelled in a number of 
fields, including speech recognition, natural language processing, and image recognition. For 
data analysis, pattern identification, and decision-making, machine learning principles and 
algorithms offer a potent toolkit. Businesses and researchers may create accurate predictions, 
automate challenging operations, and gain useful insights from their data by utilizing these 
algorithms. Machine learning is a rapidly evolving subject that is continually developing new 
algorithms and methods to solve ever-more-complex issues and increase the precision and 
effectiveness of data-driven decision-making. 
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3.2. Supervised, unsupervised, and reinforcement learning techniques 

The manufacture of biodiesel can make use of supervised, unsupervised, and reinforcement 
learning approaches in a variety of ways [55]. Here is a description of each sort of machine 
learning approach and how it can be used: 

3.2.1. Supervised learning 

In order to produce biodiesel, supervised learning methods often include training models 
on labeled data, where both the input data and the intended output are given. Some uses of 
supervised learning in the creation of biodiesel include: 
- Feedstock composition prediction: The feedstock compositions and accompanying biodiesel 

attributes of labeled datasets can be used to train supervised learning algorithms. The best 
feedstock composition can then be predicted using these models to achieve desired bio-
diesel qualities, such as viscosity, density, or flash point. 

- Biodiesel quality assessment: Supervised learning models can be used to evaluate the quality 
of biodiesel generated, forecast attributes like viscosity, density, or cetane number, and 
categorize biodiesel samples according to quality standards by training on labeled datasets 
of biodiesel samples with known quality parameters [56]. 

3.2.2. Unsupervised learning 

When there are no established labels or expected outputs for the data, unsupervised learn-
ing algorithms are used. Techniques for unsupervised learning are helpful for exploratory re-
search and identifying structures or trends in data on biodiesel production [57]. Unsupervised 
learning is used in the creation of biodiesel in a variety of ways: 
- Clustering analysis: Based on similarity in feedstock composition, process variables, or prod-

uct quality, biodiesel production data can be grouped using unsupervised learning methods 
like k-means clustering or hierarchical clustering. This can offer information on specific 
groups or categories of the data. 

- Anomaly detection: To locate anomalies or outliers in data on biodiesel production, unsuper-
vised learning algorithms can be used. These anomalies may be a sign of system malfunc-
tions, equipment failures, or data errors, allowing for the proactive mitigation of potential 
problems. 

3.2.3. Reinforcement learning 

A type of machine learning called reinforcement learning teaches an agent to make deci-
sions based on interactions with the outside world and feedback in the form of rewards or 
penalties. For tasks like process management and optimization, reinforcement learning can 
be used in the manufacture of biodiesel. Some potential uses of reinforcement learning in the 
creation of biodiesel include: 
- Optimal process control: In order to maximize the performance of the biodiesel production 

process, reinforcement learning algorithms can be trained to regulate crucial process pa-
rameters like temperature, pressure, or catalyst dosage. The agent adapts its decision-
making process in response to feedback it receives regarding the quality of the biodiesel it 
has created. 

- Resource optimization: To maximize the use of resources, such as feedstock, energy, or 
catalysts, in the manufacture of biodiesel, reinforcement learning techniques can be ap-
plied. The agent gains the ability to decide in a way that meets quality standards and 
maximizes resource efficiency. 
Processes used in the manufacturing of biodiesel can gain from enhanced prediction accu-

racy, process optimization, quality assessment, and resource efficiency by utilizing supervised, 
unsupervised, and reinforcement learning techniques. By enabling data-driven decision-mak-
ing, these machine learning techniques have the potential to increase the productivity, sus-
tainability, and cost-effectiveness of biodiesel production. 
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3.3. Feature selection and data preprocessing for biodiesel production 

Preparing data for machine learning algorithms in the biodiesel production process requires 
important stages like feature selection and data preprocessing. These procedures assist in 
ensuring the accuracy of predictions, enhancing the performance of machine learning models, 
and guaranteeing the quality and relevance of input data. Here is a summary of feature se-
lection and data preparation in relation to the creation of biodiesel: 

3.3.1. Feature selection 

Finding and choosing the most pertinent and instructive features (input variables) from the 
available dataset is feature selection. The objective is to select characteristics that significantly 
affect the output or target variable. Feature selection can be used in the manufacturing of 
biodiesel to pinpoint the critical variables that influence yield, quality, or process effectiveness. 
Some factors to take into account when choosing features for biodiesel production include: 
- Domain knowledge: The choice of crucial elements can be influenced by expert understand-

ing of the biodiesel production process. Identifying the pertinent variables to include in the 
feature set can be made easier by having a thorough understanding of the chemical reac-
tions, catalysts, feedstock compositions, and process parameters. 

- Correlation analysis: Correlation analysis, for example, is a statistical technique that may be 
used to evaluate the correlations between variables and pinpoint highly associated aspects. 
To lessen computing complexity and prevent multicollinearity problems, redundant or 
highly correlated features could be eliminated. 

- Feature importance: Decision trees and random forests are two examples of machine learn-
ing techniques that can shed light on the relative relevance of various features. Less useful 
features can be omitted from the analysis based on these metrics. 

3.3.2. Data preprocessing 

Data preparation entails preparing the data for machine learning algorithms by altering and 
organizing it. It seeks to address problems like missing data, outliers, scaling, and normalizing. 
Among the crucial phases in data preprocessing for the creation of biodiesel are: 
- Handling missing data: Datasets on the manufacturing of biodiesel frequently have missing 

data. The gaps can be filled in using methods like imputation, where missing values are 
inferred based on other available data [57]. Alternatively, if it is determined that missing 
data significantly affects the outcomes, records with incomplete data may be omitted from 
the study. 

- Outlier detection and treatment: Extreme values that differ greatly from the rest of the 
dataset are known as outliers, and they can have an impact on the precision of machine 
learning models [58]. By deleting them or substituting more typical data for them, outliers 
can be addressed after being identified using statistical techniques or visualization tech-
niques. 

- Normalization and scaling: The sizes and ranges of various dataset features may vary. To 
make sure that all features are on a same scale, normalization and scaling approaches can 
be used, such as min-max scaling or z-score normalization [59]. This assists in preventing 
the dominance of some features over the learning process due to their greater magnitude. 

- Encoding categorical variables: Machine learning methods require categorical variables in 
datasets to be numerically represented, such as the type of feedstock or catalyst utilized [60]. 
Techniques like label encoding and one-hot encoding can be used to accomplish this. 
Datasets related to the manufacture of biodiesel can be adequately prepared for machine 

learning algorithms by performing feature selection and data preprocessing. As a result, pre-
dictions, process optimizations, and quality assessments for the production of biodiesel will be 
more accurate and dependable. This guarantees that the input data is pertinent, representa-
tive, and in an appropriate format [61]. 
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3.4. Prediction of optimal feedstock composition using machine learning 

A useful strategy in the manufacture of biodiesel is the prediction of the ideal feedstock 
composition using machine learning, which provides knowledge and direction to enhance the 
production process [62]. Here is a thorough explanation of this approach: 

A dataset containing a wide range of feedstock compositions, together with matching bio-
diesel characteristics and process variables, is first created. Taking into account their possible 
influence on feedstock composition and biodiesel qualities, pertinent features are chosen from 
the dataset. This could include impurity levels, moisture content, free fatty acid content, im-
purity patterns, and other compositional traits. To assure data quality and applicability for 
machine learning algorithms, data preparation techniques are used. Outliers are dealt with, 
missing data is addressed, and scaling or normalization is done as necessary. If present, cat-
egorical variables are numerically encoded. The qualities of the dataset, the difficulty of the 
challenge, and the required interpretability all influence the choice of machine learning algo-
rithm. It is possible to use neural networks, support vector regression (SVR), decision tree-
based models like random forest regression, and linear regression algorithms. Using a training 
set, the machine learning model is taught to understand the connections between the input 
properties (feedstock composition, process parameters), and the output variable (optimal 
feedstock composition). The model's performance is assessed using a different testing set in 
order to gauge its capacity for generalization and guard against overfitting. For model evalu-
ation, methods like cross-validation might be utilized. The machine learning model can be 
used to forecast the ideal feedstock composition for new, unforeseen data points after being 
trained and validated. The model can be used to input desired biodiesel qualities or process 
goals, and it subsequently outputs the appropriate ideal feedstock composition. To meet spe-
cific biodiesel quality goals or process improvements, these forecasts help decision-makers 
choose the right feedstock types and their proportions. The model can be improved continu-
ously by being updated and retrained with fresh data as it becomes available. Over time, 
accuracy and relevance are ensured by routine updates. Overall, machine learning's ability to 
forecast the ideal feedstock composition allows producers of biodiesel to make decisions based 
on data. It aids in maximizing resource use, enhancing the effectiveness of processes, and 
achieving desirable biodiesel qualities [63]. Biodiesel manufacturers may select feedstocks in-
telligently, improve product quality, and streamline the entire biodiesel manufacturing process 
by utilizing machine learning algorithms [17].. 

3.5. Modeling and optimization of transesterification reactions 

In order to produce biodiesel, transesterification reactions must be modeled and optimized, 
and machine learning technologies have shown to be helpful in this regard [64]. Researchers 
and industry professionals can create models and optimize the transesterification process to 
increase efficiency and improve biodiesel yield and quality by utilizing machine learning meth-
ods and techniques [19]. Machine learning approaches are used in the modeling phase to create 
models that accurately forecast the conversion efficiency and biodiesel production depending 
on numerous parameters including feedstock composition, catalyst concentration, tempera-
ture, reaction time, and mixing intensity [26]. These models accurately depict the intricate 
interaction between the different input variables and the desired outcome, offering insightful 
information about the transesterification procedure. A dataset including a wide range of ex-
perimental or simulated data points reflecting various combinations of input factors and ac-
companying transesterification reaction outcomes is developed in order to train these models [65]. 
To account for all possible situations, the dataset includes changes in feedstock types, cata-
lysts, reaction conditions, and process parameters. 

Taking into account their influence on the transesterification process, pertinent features are 
chosen from the dataset. These characteristics could be the content of the feedstock, the 
concentration of the catalyst, the temperature, the reaction duration, and other pertinent var-
iables [66]. Machine learning models perform better when preparing data using methods in-
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cluding addressing missing data, removing outliers, and standardization. Following model se-
lection, the dataset is prepared for training, during which the model discovers the correlations 
between the input variables and the intended transesterification results. To guarantee the 
correctness and generalizability of the model, its performance is assessed using appropriate 
evaluation metrics and cross-validation methods. In the optimization phase, machine learning 
models and optimization algorithms are integrated to find the best circumstances for reactions 
that would maximize biodiesel yield or produce particular attributes in the biodiesel [67]. The 
choice of feedstock composition, catalyst dosage, reaction temperature, and reaction duration 
can be guided by genetic algorithms, gradient-based approaches, or other optimization tech-
niques. The models must be updated and modified consistently. Real-time process information 
and feedback loops enable adaptive control and long-term model improvement. As new data 
becomes available or as the process conditions change, the models can be updated and en-
hanced to ensure their relevance and accuracy. 

In conclusion, biodiesel producers can increase process efficiency, maximize biodiesel yield, 
and achieve desired biodiesel qualities by modeling and optimizing transesterification pro-
cesses using machine learning approaches [68]. By offering data-driven insights and decision-
making tools for process optimization and control, these applications increase biodiesel pro-
duction. 

3.6. Monitoring and control of critical process parameters using ML algorithms 

Using machine learning (ML) algorithms to monitor and regulate crucial process parameters 
is a potent strategy in the manufacture of biodiesel. By doing so, producers may preserve 
product quality, ensure the best possible process performance, and increase overall produc-
tivity [17]. The use of ML algorithms for monitoring and controlling crucial process parameters 
during the synthesis of biodiesel is fully explained here: Using sensors and monitoring sys-
tems, the process first gathers information on crucial process parameters. Temperature, pres-
sure, catalyst concentration, feedstock composition, reaction duration, and other factors are 
examples of these parameters. For ML algorithms, the acquired data is used as the input. 
Preprocessing is done on the gathered data to deal with missing values, get rid of outliers, 
and normalize or scale the data as needed. Data preparation enhances the accuracy and reli-
ability of the input data, making it ready for ML algorithms to analyze. Regression, neural 
networks, and support vector machines are a few examples of machine learning (ML) methods 
that are used to create models that can recognize patterns and relationships between process 
parameters and desired results. The historical data used to train these models contains meas-
urements of the process parameter values as well as the related target values (e.g., biodiesel 
yield, product quality) [69]. The models can capture the intricate dynamics of the biodiesel 
generation process thanks to the training process. The ML models can be used for real-time 
monitoring of crucial process parameters once they have been trained. The models use the 
incoming sensor data to forecast and evaluate the process's current status. It is possible to 
identify deviations from expected values or predetermined thresholds, which can then set off 
alarms or messages calling for rapid attention. 

ML algorithms are very good at spotting abnormalities or differences from typical process 
behavior. Anomalies can be found by comparing real-time sensor data with the trained model's 
predictions. These abnormalities could point to faulty machinery, process irregularities, or 
possible problems that could hinder the production of biodiesel. Insights into the underlying 
causes of abnormalities are provided by ML algorithms, facilitating problem detection and 
directing corrective measures. ML algorithms can be used for process optimization and control. 
The ML models can offer suggestions or adjustments to crucial process parameters by exam-
ining real-time sensor data [70]. This entails adjusting the temperature, pressure, catalyst 
dosage, and other factors in order to maximize the yield, quality, and energy efficiency of 
biodiesel. Control techniques can be iteratively improved using reinforcement learning algo-
rithms based on feedback from the process. Algorithms for machine learning can continuously 
learn and get better. They can incorporate fresh data and adjust to changing process circum-
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stances to function more effectively. The models are adaptable to changes in feedstock com-
position, equipment performance, or environmental conditions since they can be routinely 
retrained using current datasets. Continuous learning facilitates continual process optimization 
and enhances the predictive power of the models. 

Biodiesel manufacturers may increase process stability, product quality, resource usage, 
and operational costs by utilizing ML algorithms for monitoring and controlling crucial process 
parameters [19]. These tools support the deployment of advanced process control strategies, 
encourage data-driven decision-making, and contribute to more effective and sustainable bi-
odiesel production processes. 

3.7. Quality prediction and assessment of biodiesel using machine learning 

The prediction and evaluation of biodiesel quality have a lot of potential when using machine 
learning (ML) approaches. According to Rocabruno-Valdés et al. [70], ML algorithms can ex-
amine intricate correlations between input parameters and biodiesel quality indicators to make 
precise predictions and offer insightful information. Here is a thorough explanation of how 
machine learning is used in the manufacture of biodiesel to anticipate and evaluate quality: 

A large dataset of biodiesel samples with related quality parameters is gathered in order to 
create ML models for quality prediction [56]. The collection contains information on the chem-
ical makeup of biodiesel, reaction conditions, production parameters, and feedstock composi-
tion [71]. The handling of missing values, outliers, and normalization of the data all require the 
use of data preparation techniques. Based on their influence on biodiesel quality, relevant 
features are chosen or engineered from the dataset. Fatty acid content, kinematic viscosity, 
density, oxidative stability, cetane number, and other physicochemical characteristics are a 
few examples of these characteristics. The performance and interpretability of the ML models 
are improved by feature selection by removing unnecessary or redundant information. Re-
gression algorithms, random forests, support vector machines, and neural networks are just 
a few examples of the ML techniques that can be used to forecast quality. The dataset is used 
to train the chosen algorithm with the biodiesel quality metrics as the goal variables. The 
relationship between the input features and the required quality indicators is learned by the 
model. The performance and generalization capacities of the trained ML model are evaluated 
using suitable evaluation criteria. Techniques for cross-validation can be used to ensure resil-
ience and reduce overfitting. The model is verified by evaluating how well it performs on a 
separate test dataset that represents hypothetical biodiesel samples. The ML model can be 
used to forecast the quality of biodiesel for new, untested samples once it has been trained 
and validated. The model can calculate quality characteristics including kinematic viscosity, 
density, oxidative stability, and cetane number by feeding in the pertinent features. Addition-
ally, ML models can categorize biodiesel samples in accordance with quality standards to de-
termine whether they adhere to particular industrial or regulatory norms. 

In biodiesel quality data, ML systems can identify anomalies or outliers, highlighting sam-
ples that drastically depart from the mean. These abnormalities could be a sign of process 
flaws, feedstock contaminants, or other elements impacting biodiesel quality. Such outlier 
analyses can shed light on potential problems and direct quality-improvement initiatives. By 
including fresh data and iteratively improving the models, machine learning algorithms for 
predicting the quality of biodiesel can be improved continually. As new samples and high-
quality data become available, regular updates and retraining of the models assure their ac-
curacy and relevance. 

In biodiesel quality data, ML systems can identify anomalies or outliers, highlighting sam-
ples that drastically depart from the mean. These abnormalities could be a sign of process 
flaws, feedstock contaminants, or other elements impacting biodiesel quality. Such outlier 
analyses can shed light on potential problems and direct quality-improvement initiatives. By 
including fresh data and iteratively improving the models, machine learning algorithms for 
predicting the quality of biodiesel can be improved continually. As new samples and high-
quality data become available, regular updates and retraining of the models assure their ac-
curacy and relevance. 
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4. Machine learning models for biodiesel production 

4.1. Regression models for feedstock composition prediction 

Various regression algorithms are employed to develop models that accurately predict the 
feedstock composition. Linear regression, support vector regression (SVR), decision tree-
based models like random forest regression, or more advanced techniques like neural net-
works can be utilized. The selected algorithm is trained using the dataset, with the feedstock 
composition as the target variable. The model learns the relationships between the input fea-
tures and the corresponding composition. The trained regression model is evaluated using 
appropriate evaluation metrics to assess its performance and generalization capabilities. 
Cross-validation techniques may be applied to ensure robustness and mitigate overfitting. The 
model is validated by assessing its performance on an independent test dataset, representing 
unseen feedstock samples. Once the regression model is trained and validated, it can be used 
to predict the composition of new, unseen feedstock samples. By inputting the relevant fea-
tures into the model, it can estimate the composition of different constituents in the feedstock. 
This prediction capability aids in feedstock selection, process optimization, and meeting spe-
cific quality targets. 

Regression models for feedstock composition prediction can be continuously improved by 
incorporating new data and refining the models over time. Regular updates and retraining of 
the models ensure their accuracy and relevance as new feedstock samples and data become 
available. The use of regression models for feedstock composition prediction empowers bio-
diesel producers to make informed decisions regarding feedstock selection, process optimiza-
tion, and achieving desired biodiesel quality targets [19]. These models provide valuable in-
sights into the relationships between input variables and feedstock composition, enhancing 
the efficiency and effectiveness of biodiesel production processes. 

4.2. Classification algorithms for biodiesel quality assessment 

Various classification algorithms are employed to develop models that accurately classify 
biodiesel samples based on quality standards. Logistic regression, support vector machines 
(SVM), random forests, and neural networks are commonly used algorithms [72]. The selected 
algorithm is trained using the dataset, with the biodiesel quality indicators serving as the 
target variables. The model learns the relationships between the input features and the cor-
responding quality categories. The trained classification model is evaluated using appropriate 
evaluation metrics to assess its performance and generalization capabilities. Cross-validation 
techniques may be applied to ensure robustness and mitigate overfitting. The model is vali-
dated by assessing its performance on an independent test dataset, representing unseen bi-
odiesel samples. 

Once the classification model is trained and validated, it can be utilized to assess the quality 
of new, unseen biodiesel samples. By inputting the relevant features into the model, it can 
classify the samples into different quality categories or indicate whether they meet specific 
regulatory or industry criteria. This capability aids in quality control, compliance with stand-
ards, and decision-making regarding product acceptance or rejection. Classification algorithms 
can also detect anomalies or outliers in biodiesel quality data, flagging samples that deviate 
significantly from the norm [73]. These anomalies may indicate process deviations, impurities 
in the feedstock, or other factors affecting biodiesel quality. Analyzing such outliers can pro-
vide insights into potential issues and guide quality improvement measures. Classification 
models for biodiesel quality assessment can be continuously improved by incorporating new 
data and refining the models over time [72] Regular updates and retraining of the models 
ensure their accuracy and relevance as new samples and quality data become available. 

The use of classification algorithms for biodiesel quality assessment enables producers to 
make informed decisions, optimize processes, and ensure compliance with quality standards [72]. 
These models provide valuable insights into the relationships between input variables and 
biodiesel quality, enhancing the efficiency and effectiveness of quality control processes in 
biodiesel production. 
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4.3. Neural networks and deep learning for process optimization 

Neural networks and deep learning techniques offer significant potential for process opti-
mization in biodiesel production [57]. These advanced machine learning methods can analyze 
complex relationships within biodiesel production data and provide valuable insights to opti-
mize various aspects of the process. Here is a comprehensive insight into the use of neural 
networks and deep learning for process optimization in biodiesel production: 

The neural network is trained using the prepared dataset, with the process parameters and 
input variables as the input features and the output variables as the target variable for opti-
mization. The training process adjusts the weights and biases of the neural network based on 
the training data, gradually improving its performance. The model's performance is evaluated 
using validation data to ensure its generalization capabilities. 

Once the neural network is trained and validated, it can be used for process optimization. 
The network takes input data representing process parameters and input variables and pre-
dicts the corresponding output variables. By iteratively adjusting the process parameters 
within specified constraints, the neural network can guide decision-making to optimize bio-
diesel yield, quality, energy efficiency, or other desired objectives. Deep learning techniques, 
such as convolutional neural networks (CNNs) or recurrent neural networks (RNNs), can be 
applied for specific process optimization tasks in biodiesel production. CNNs are suitable for 
analyzing image or spectroscopic data, such as analyzing the biodiesel production process 
using images from sensors. RNNs are useful for time series analysis, such as optimizing pro-
cess parameters over time. Neural networks and deep learning models can continuously learn 
and adapt to changes in the biodiesel production process. By incorporating real-time process 
data and feedback loops, the models can update and refine their predictions and optimization 
strategies, ensuring they remain relevant and accurate as the process conditions evolve. Neu-
ral networks and deep learning models can be integrated with optimization algorithms, such 
as genetic algorithms or particle swarm optimization, to further enhance process optimization. 
These hybrid approaches combine the learning capabilities of neural networks with the search 
and optimization capabilities of the optimization algorithms, enabling more efficient and effec-
tive process optimization. 

The application of neural networks and deep learning for process optimization in biodiesel 
production allows for data-driven decision-making, improved process efficiency, and enhanced 
product quality [57]. These techniques enable producers to optimize process parameters, re-
source allocation, and energy consumption, leading to more sustainable and economically vi-
able biodiesel production processes. 

4.4. Ensemble learning approaches for enhanced accuracy 

Ensemble learning approaches can be effectively used to enhance the accuracy of biodiesel 
production predictions and models. Ensemble learning combines multiple individual models to 
make more accurate and robust predictions by leveraging the strengths of each model . Here 
is a comprehensive insight into the use of ensemble learning approaches for enhanced accu-
racy in biodiesel production. 

4.4.1. Bagging 

Bagging, short for bootstrap aggregating, is an ensemble learning approach where multiple 
models are trained on different subsets of the training data. In the context of biodiesel pro-
duction, multiple models, such as decision trees or neural networks, are trained on different 
subsets of the biodiesel production dataset [74]. The predictions from each model are then 
combined to make the final prediction. Bagging helps reduce the variance of the predictions 
and improves the overall accuracy of biodiesel production models. 

4.4.2. Random Forests 

Random forests is a popular ensemble learning technique that combines multiple decision 
tree models. Each decision tree is trained on a random subset of the training data and makes 
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predictions independently. The final prediction is determined by aggregating the predictions 
from all the decision trees in the forest. Random Forests are known for their robustness, ability 
to handle complex datasets, and feature importance analysis. 

4.4.3. Boosting 

Boosting is an ensemble learning technique that focuses on training models sequentially, 
where each subsequent model is trained to correct the errors of the previous models. Boosting 
algorithms, such as AdaBoost or Gradient Boosting, assign weights to the training instances 
to emphasize the misclassified samples and improve the overall model performance. In bio-
diesel production, boosting can be applied to enhance the accuracy of models predicting bio-
diesel yield, quality indicators, or process parameters. 

4.4.4. Stacking 

Stacking is an ensemble learning approach that combines multiple models by training a 
meta-model that takes the predictions of individual models as input [75]. In biodiesel produc-
tion, multiple models, such as regression models or neural networks, are trained on the bio-
diesel production dataset [70]. The predictions from each model are then used as features for 
training the meta-model, which makes the final prediction. Stacking allows for more sophisti-
cated learning and can improve the accuracy of biodiesel production models. 

4.4.5. Voting 

Voting is a simple yet effective ensemble learning approach where multiple models are 
trained independently, and the final prediction is determined based on a majority vote or 
weighted average of the predictions. In biodiesel production, different models with varying 
algorithms or parameters can be trained, and their predictions can be combined through vot-
ing to improve accuracy. Voting can be implemented as hard voting (majority) or soft voting 
(weighted average based on confidence scores). 

Ensemble learning approaches, such as bagging, random forests, boosting, stacking, and 
voting, offer improved accuracy and robustness in biodiesel production predictions and mod-
els. By combining the predictions of multiple models, these approaches mitigate biases, reduce 
variance, and enhance the overall accuracy of biodiesel production models. Biodiesel produc-
ers can benefit from ensemble learning by making more reliable decisions, optimizing process 
parameters, and improving the efficiency and quality of biodiesel production. 

5. Performance evaluation and validation 

5.1. Evaluation metrics for assessing the performance of machine learning models 

Different evaluation criteria can be used to gauge the efficiency and accuracy of machine 
learning models for the manufacture of biodiesel [76]. These metrics offer information on the 
models' accuracy in foretelling biodiesel yield, quality indicators, or other pertinent results. 
The effectiveness of machine learning models employed in the manufacture of biodiesel can 
be evaluated using some of the metrics listed below: 

5.1.1. Mean absolute error (MAE) 

The average absolute difference between the expected and actual values is measured by 
MAE. It provides a clue as to the typical size of the prediction mistakes. Better model perfor-
mance, with less differences between predicted and actual values, is indicated by a lower MAE. 

5.1.2. Mean squared error (MSE) 

MSE calculates the average of the squared differences between the predicted and actual 
values. It amplifies larger errors, making it more sensitive to outliers. MSE provides a measure 
of the average squared deviation between predicted and actual values, and a lower MSE im-
plies a better model fit. 
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5.1.3. Root mean squared error (RMSE) 

The RMSE, which is the square root of the MSE, is frequently employed as an evaluation 
statistic to determine the overall amount of the predictions' errors. It offers a more under-
standable measurement of the typical difference between expected and actual values. A lower 
RMSE indicates better model performance. 

5.1.4. R-squared (R²) 

R-squared is a statistical measure that shows how much of the variance in the dependent 
variable (like the yield of biodiesel) can be accounted for by the independent variables (e.g., 
input parameters). It has a value between 0 and 1, with higher values suggesting a better 
model fit and the capacity to explain the variation in the target variable. 

5.1.5. Accuracy 

Accuracy is a common criterion for evaluating classification tasks in the production of bio-
diesel. It determines the percentage of correctly identified samples in respect to the overall 
sample count. Higher accuracy denotes better classification performance [77]. 

5.1.6. Precision, Recall, and F1-score 

To evaluate the effectiveness of machine learning models in binary classification tasks, 
these metrics are frequently utilized. The F1-score combines accuracy and recall into a single 
metric, representing the proportion of true positive predictions out of all positive forecasts, 
recall (sensitivity) measuring the proportion of true positive predictions out of all real positive 
cases. These indicators are helpful for assessing how well models work when forecasting cer-
tain biodiesel quality classes or complying with requirements. 

5.1.7. Receiver operating characteristic (ROC) curve and area under the curve (AUC) 

The trade-off between true positive rate and false positive rate at various categorization 
criteria is represented by the ROC curve. The area under the ROC curve, or AUC, serves as a 
general indicator of the discrimination capacity of a model. Better categorization performance 
is indicated by a higher AUC. 

These evaluation metrics offer quantitative ways to rate the efficiency of machine learning 
models used in the creation of biodiesel. Researchers and practitioners can choose the relevant 
metrics to assess and contrast various models, assisting in model choice, optimization, and 
decision-making in the biodiesel manufacturing process. 

5.2. Cross-validation techniques for model validation 

The cross-validation techniques are frequently employed for model validation in the man-
ufacturing of diesel in order to evaluate the effectiveness and generalizability of machine 
learning models. Here are a few cross-validation methods that are frequently used in diesel 
production. 

5.2.1. Holdout validation 

The dataset is divided into a training set and a validation set for holdout validation. The model 
is tested on the validation set after being evaluated on the training set. This technique gives 
a rapid and easy evaluation of the model's performance, but it may be sensitive to the partic-
ular instances included in each batch. 

5.2.2. K-Fold cross-validation 

The dataset is divided into K folds of equal size using K-fold cross-validation. The validation 
set is utilized once for each fold, while the remaining folds are used for training. The model is 
trained and tested K times [52]. To assess total performance, the performance values from 
each fold are averaged. K-fold cross-validation strengthens evaluation by removing reliance 
on a particular data split. 
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5.2.3. Stratified K-Fold cross-validation 

For classification problems in diesel manufacturing, stratified K-fold cross-validation is 
highly helpful, especially when working with unbalanced datasets. As a result, each fold will 
have a comparable number of samples from each class and the class distribution will be kept. 
The accuracy of performance estimations for various classes is improved by this method. 

5.2.4. Leave-One-Out cross-validation (LOOCV) 

In LOOCV, the model is trained on all samples except one, and its performance is then 
assessed on the sample that was left out [55]. Each sample in the dataset is subjected to this 
method once more. Despite the fact that LOOCV offers an unbiased measure of model perfor-
mance, it can be computationally expensive, especially for bigger datasets. 

5.2.5. Time Series cross-validation 

Time series cross-validation is applied to diesel production data with a temporal component [78]. 
When dividing the data into training and validation sets, this method takes into account the 
temporal order of the data. The model is evaluated on future data after being trained on 
previous data, simulating the real-world situation where predictions are made about unknow-
able future events. 

By revealing information about how well machine learning models generalize to new data, 
these cross-validation techniques aid in evaluating the performance of those models in the 
diesel manufacturing process [77]. These strategies enable the detection of potential problems 
like overfitting or underfitting by testing models on various subsets of the dataset. The char-
acteristics of the diesel production dataset and the particular needs of the modeling task de-
termine the cross-validation technique to be used [77]. 

5.3. Case studies in biodiesel production 

The following processes are involved in making biodiesel from renewable sources: oil ex-
traction, pretreatment of the feedstock, transesterification reaction, product separation, re-
covery of unreacted alcohol, neutralization of glycerin, washing, and biodiesel purification [17,24]. 
The five key stages of biodiesel production—soil, feedstock, production, consumption, and 
emissions—were attempted to be categorized and reviewed in this section [66,78]. 

All five steps can benefit from ML technology to improve the accuracy of estimates. This 
study primarily focuses on the first three steps because there are many reviews of research 
on the use of machine learning technology in modeling biodiesel-fueled engines and combus-
tion techniques.  

5.3.1. ML Applications in soil stage 

Numerous studies on the plot and tree cases applying ML have been reported in the soil 
stage of the biofuels’ life cycle. The most common ML methods in the soil stage are Random 
Forest (RF), Gaussian Process Model (GPM), and Support Vector Machines (SVM). 

The sorghum crop is useful for creating healthy biofuels, seeds, and feed from aboveground 
biomass [79]. In order to predict future trends in sorghum bicolor yield under four different green-
house gas (GHG) emission scenarios and two different watering regimes, Huntington et al. [80] 
employed the RF approach. The most accurate predictors of sorghum productivity were vapor 
pressure deficit, duration, and irrigation methods. The RF model was able to create accurate 
predictions by precisely training and classifying data samples according to year and country. 
Habyarimana et al. [79] used a variety of machine learning (ML) techniques to predict the yield 
of sorghum biomass in a study based on satellite images of sorghum fields. These techniques 
included radial basis kernel (SVM-R), nonlinear kernel (SVM-G), PCA discriminant analysis 
(PCA-DA), PLS discriminant analysis (PLS-DA), and SVM with linear classifier. 

Tsai et al. [81] examined the Linear Mixed-effects Regression (LME), Cubist, Support Vector 
Regression (SVR), and Random Forest (RF) approaches to estimate biomass in a moderately 
dense forest with 40 to 60 percent canopy closure, where SVR delivered the most accurate 
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biomass model. In a four-scenario context emissions-based study, Lee et al. [82] estimated 
the environmental impacts of corn production from 2022 to 2100 using the boosted regression 
tree (BRT) model. The BRT model had a correlation coefficient of 0.82 for estimating eutroph-
ication impacts and 0.78 for global warming. To get more precise estimations, [83] used the 
Gaussian Process Model (GPM), a Bayesian inference technique, in a two-stage machine learn-
ing process. GPM crops yield downscaling came first, followed by an RF model's predicted 
yield. Typically, input parameters include soil properties, solar radiation, average precipitation, 
wind speed, and temperature, while output parameters include biomass yield and future life 
cycle environmental impact. To comprehend the efficient strategy used in each investigation, 
Table 1 summarizes soil phase studies.  

Table 1: Various ML applications in the soil phase of biodiesel production outline. 

Reference Applied model Field Results 

[79] 

GBL, GBD, GBT, ANN, 
RF, SVR, SVM, SVM-P, 
SVM-R, SVM-G, PCA-

DA, PLS-DA 

Predict sorghum crop 
yield GBT 

[80] RF Predict sorghum crop 
yield RF 

[81] LME, SVR, RF Predict biomass yield 
in forest SVR 

[82] BRT 
Estimate corn produc-
tion environmental im-

pacts 
BRT 

[83] GPM, RF Land productivity GPM 

5.3.2. ML Applications in Feedstock 

The most widely used techniques for machine learning in the feedstock phase investigations 
include ANN, multiple linear regression, statistical regression, and multiple nonlinear regres-
sion models. The usual input parameters include blend composition, temperature, mixing du-
ration, and speed. The usual output parameters include viscosity, flash point, oxidation sta-
bility, density, methane fraction, higher heating values, and cetane number. Mairizal et al. [84] 
looked at biodiesels produced from a variety of sources, including hydrogenated coconut oil, 
hydrogenated copra oil, beef tallow, walnut oil, sunflower oil, peanut oil, rapeseed oil, and 
rapeseed oil, to predict higher heating value, viscosity, flashpoint, oxidative stability, and den-
sity using multiple linear regressions. The results revealed that by including PU/MU (mono- 
and polyunsaturated fatty acids balance) as an independent parameter, prediction perfor-
mance improves. The content of polyunsaturated fatty acids in the feedstock, as well as its 
iodine and saponification values, were model inputs. Another study used the ANN approach to 
calculate the cetane number, density, kinematic viscosity, and flashpoint of several biodiesels 
made from fatty acids [85]. The results for cetane number (1.637 percent; 96.6 percent), flash 
point (0.997 percent; 99.07 percent), kinematic viscosity (1.638 percent; 95.80 percent), and 
density (1.638 percent; 95.6 percent) represent the average absolute deviation and the estimation 
accuracy of the model, respectively (0.101percent; 99.40 percent).  

5.3.3. ML applications in production 

Tchameni et al. [86] predicted the rheological parameters of waste vegetable oil using mul-
tiple ANN and nonlinear regression (MNLR). Results showed that the ANN model performed 
better than the MNLR technique. A significant association between the potentials of methane 
biomass and chemical composition was found when estimating methane yield in biomass struc-
tural components using single linear regressions and multiple linear regressions. To identify the 
effective method 3and study aims, Table 2 summarizes feedstock phase investigations [85-86]. 
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Table 2: Various ML applications in the feedstock phase of biodiesel production outline. 

Reference Applied model Aim 

[84] Multiple linear regressions To predict HHV, viscosity, FP, oxidative stability, 
density 

[85] ANN To estimate C, density, kinematic viscosity, FP 

[86] ANN, MNLR, single and multiple linear 
regressions To estimate oil rheological properties 

Quality prediction 

The most popular machine learning technique for predicting quality is an algorithm called 
Annotated Neural Networks (ANN), which was developed by regression models and uses input 
variables such as reaction temperature, reaction time, calcination temperature, pressure, and 
flow rate and output variables such as FAME (fatty acid methyl ester) content, viscosity, com-
position, quantity, cetane number, and density. 

When distilling Palm Fatty Acids (PFADs) into esters, Soltani et al. [88] used a sulfonated 
mesoporous zinc oxide SO3HZnO catalyst. They used an Artificial Neural Network (ANN) to 
model the effects of different reaction parameter effects, such as calcination temperature, 
metal ratio, reaction time, and reaction temperature. The evaluated ideal parameters for fore-
casting a 56.41 nm SOH-ZnO nanocrystalline catalyst size were 160°C reaction temperature, 
700°C calcine temperature, and 0.004 mole of Zn concentration over 18 min of reaction time. 
The most and least efficient parameters are generally acknowledged to be zinc concentration 
and reaction time. 

In order to predict quantity, quality, flow rate, the cetane number of fatty acid methyl 
esters (FAME), and composition in the process of producing vegetable oil-based biodiesel, 
Ahmad et al. [89] combined an ensemble learning technique called Least Squares Boosting 
(LSBoost) with the Polynomial Chaos Expansion method (PCE). Using Mean Absolute Deviation 
Percent (MADP), predicted values exhibited 1 percent uncertainty in all process parameters, 
demonstrating the proposed model's excellent accuracy in outcome prediction and quantifica-
tion of uncertainty effect in the process. The PCA approach was used to calculate the relative 
density, viscosity, and percentage of vegetable oil conversion to methyl esters during the 
biodiesel synthesis process from vegetable oil. PCA is a useful tool for differentiating and sep-
arating pure biodiesel, pure diesel, and waste oil. 

5.4. Pure diesel, waste oil, and biodiesel 

The production of biodiesel from sesame oil using barium hydroxide as a basic catalyst was 
predicted by Bharadwaj et al. [90] using an Artificial Neural Network (ANN) and response sur-
face methodology (RSM) based on a central composite design (CCD). The best feasible set of 
values for the optimum conditions were the methanol-to-oil molar ratio (6.69:1), the reaction 
time (40.30 min), the catalyst concentration (1.79 wt%), and the temperature (31.92°C), 
which produced a 98.6 percent FAME content. According to the study, the key factor affecting 
the amount of FAME in the finished product is the catalyst concentration. ANN has a better 
correlation coefficient, root mean square error (R2), and standard error of prediction, which 
improve its capacity to forecast the FAME content. According to the study, the key factor 
affecting the amount of FAME in the finished product is the catalyst concentration. In compar-
ison to RSM, ANN performs better in terms of correlation coefficient, root mean square error 
(R2), standard error of prediction (SEP), and relative percent deviation (RPD). 

5.4.1. Yield estimation 

Numerous studies focused on the use of ML techniques to forecast the production of bio-
diesel from oils that are not edible, such as anaerobic sludge, castor oil, and jatropha algae [91]. 

Using jatropha-algae oil blends as inputs, Kumar et al. [91] trained an ANN model with the 
Levenberg-Marquardt (LM) algorithm and backpropagation learning method to predict bio-
diesel yield in the transesterification process. The effectiveness of the ANN technique was 
demonstrated by the R-square value of 0.9976 when compared to the experimental findings. 
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Gandhi and Gogate as well as Álvarez-Mateos. Castor oil and methanol transesterification 
with H2SO4 acid catalyst employed the ANN and CCD model to forecast the percent fatty acid 
methyl ester content [92-93]. Using the experimental and computational data, they also devel-
oped a kinetic model. The rate constants of a kinetic model have also been computed using 
experimental outputs and anticipated data generated by ANNs. The input parameters are the 
temperature, catalyst concentration, and methanol-to-oil molar ratio. A percent fatty acid me-
thyl ester yield with an 8 percent variation was predicted by the ANN model. 

Chollom et al. [94] modelled and estimated the anaerobe thermophilic upflow sludge blanket 
digester biodiesel and biogas production rate using the ANN method and multilayer neural 
networks topology. In both constant and abnormal situations, trained and tested experimental 
data were assessed; a high correlation coefficient indicated ANN optimistic findings for online 
monitoring of the thermophilic reactors. In a trial using a jatropha-algae oil combination, ANN 
outperformed RSM [95]. RSM and ANN were used to model a biodiesel synthesis process from 
waste goat tallow that contained notable free fatty acids (FFAs) in order to determine the ideal 
parametric parameters that led to the greatest FA conversion. Response surface methodology 
(RSM) and ANN demonstrated comparable predictive performance under ideal circumstances [96]. 

In a different study, a Levenberg-Marquardt learning algorithm-based ANN model and a 
linear regression (LR) model were created to estimate the yield of biodiesel made from soy-
bean oil. The ANN outperformed the LR model [97]. To forecast biodiesel yield, a variety of 
circumstances for the transesterification of soybean oil to biodiesel have been explored [98]. In 
this study, a multilayer feedforward neural network and kinetic models are used using artificial 
neural networks. The outcomes demonstrated that the ANN model was superior than kinetic 
modeling in terms of accuracy and clarity. Talaghat et al. [26] estimated the biodiesel produc-
tion yield as a function of methanol/oil ratio, pressure, reaction time, and temperature in the 
noncatalytic supercritical methanol (SCM) method using an adaptive neurofuzzy interference 
system (ANFIS) method based on a statistical learning theory. The ANFIS model's influence 
on forecasting biodiesel yield can be shown by the strong R-squared values of the data. In 
order to forecast and simulate the effectiveness of these approaches in estimating the trans-
esterification yield, Mostafa et al. [99] contrasted the Adaptive Neurofuzzy Inference System 
(ANFIS) and response surface methodology (RSM). The effect of independent variables on the 
conversion of fatty acid methyl esters was examined using the Box-Behnken design of RSM 
and two ANFIS approaches (hybrid and backpropagation optimization methods) (FAME). The 
significant R2 value for the RSM was 0.9669, while it was 0.9812 and 0.9808 for the two ANFIS 
models, suggesting the superiority of the ANFIS models over the RSM model for modeling and 
optimizing. Artificial neural network (ANN) and response surface methodology (RSM) efficiency 
were evaluated by Meran et al. [100] to predict and simulate muskmelon oil-based biodiesel 
yield. Research conducted by the Central Composite Rotatable Design (CCRD) compared the 
ANN model to the RSM model. FAME conversion via Multilayer Perceptron (MLP) neural net-
work and RSM is influenced by the catalyst concentration, reaction time, reaction temperature, 
and methanol-to-oil molar ratio. The R2 value for the RSM was 0.869, while the ANN model's 
value was 0.991, demonstrating the ANN model's superiority over the RSM in terms of mod-
eling and optimizing FAME production. 

5.4.2. Quality and yield estimation 

Numerous studies have focused on biodiesel quality and yield optimization. Bobadilla et al. [101] 
used a set of Support Vector Machines (based on radial basic function kernel, linear kernel, 
and polynomial kernel) and linear regression methods to predict and improve biodiesel yield 
of particular properties like turbidity, higher heating value (HHV) with decreased viscosity, 
and density. Appling genetic algorithms to the regression models obtained more accurate bi-
odiesel optimization scenarios to identify the best combination of independent and dependent 
variables. 

Pustokhina et al. [102] developed a GA-ESIM method which is the combination of Evolution-
ary Support Vector Machine Inference Model (ESIM) and K-means Chaotic Genetic Algorithm 
(KCGA) to predict precisely and optimize biodiesel mixture properties. They found GA-ESVM 
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better than ANN-GA and SVM. Obtained results demonstrate that the GA-ESIM model perfor-
mance in prediction is more accurate than other AI-based tools. 

Muna et al. [103] used ANN-GA-based and RSM models to predict and optimize the biodiesel 
yield in Simarouba glauca transesterification. They used a gas chromatography-mass spectro-
scopic (GC-MS) analysis oil to observe Free Fatty Acid (FFA) level, and alcohol ratio, reaction 
time, and reaction temperature were input variables. 

Musa et al. [104] focused on an RSM optimization tool alongside the ANFIS model to predict 
and optimize the biodiesel yield in the Thevetia peruviana seed oil transesterification process. 
In addition to ANFIS and RSM model, using GA resulted in higher Thevetia Peruviana Methyl 
Esters yield (TPME) in less time. The results determined the priority of ANFIS prediction capa-
bility over the RSM model. Kumar. [74] applied ANN and GA combination in polanga oil-based 
biodiesel production to predict and optimize reaction variables to maximize the transesterifi-
cation process. The input variables are the ethanol-to-oil molar ratio, the reaction tempera-
ture, the catalyst concentration, the reaction time, and the stirring speed. Outputs were com-
bined with GA to optimize reaction conditions resulting in 92% by weight biodiesel yield. 

5.4.3. Estimation and optimization of process conditions and efficiency 

Pauline et al. [105] used a multiobjective analysis in order to assess the FAME concentration 
and exergetic efficiency in waste cooking oil transesterification (WCO) for biodiesel synthesis. 
To obtain 95.7 percent projected FAME content, the following factors have been optimized: 
water concentration, reaction duration, immobile lipase, and methanol concentration. The 35 
percent catalyst concentration, 12 percent water content, 6.7 molar ratio of methanol to WCO, 
20-hour production time, 86 percent FAME content, and 80.1% energy efficiency are the cor-
responding input variables. 

In order to simulate and compare the esterification and transesterification processes of 
palm waste cooking oil, Kolakoti et al. [4] employed nondominated sorting GA-II (NSGA-II) 
multiobjective optimization. They also optimized heat duty, profit, and organic waste. The 
profit improved as the heat duty grew, which led to an increase in organic waste. Rouchi et al. [106] 
processed the analysis and directed the reaction parameters in the desired direction using a 
Multivariate Curve Resolution Alternative Least Square (MCR-ALS). To produce biodiesel from 
the soybean process, the Multiple Scatter Correction preprocessing technique and MCR-ALS 
analyze concentrations, the kind of component, and spectra. Kolakoti et al. [4] optimized heat 
duty, profit, and organic waste while simulating and comparing palm waste cooking oil ester-
ification and transesterification reactions using Nondominated Sorting GA-II (NSGA-II) multi-
objective optimization. The profit rose as the heat duty rose, which raised the volume of or-
ganic waste. In order to process the study and steer the reaction parameters in the desired 
direction, Rouchi et al. [106] applied a Multivariate Curve Resolution Alternative Least Square 
(MCR-ALS). In order to produce biodiesel from the soybean process, multiple scatter correction 
preprocessing approach and MCR-ALS assess concentrations, the kind of component, and spectra. 

In order to optimize operating conditions as a function of inputs, Aghbashlo et al. [107] 
created an ANFIS model integrated with linear interdependent fuzzy multiobjective (ALIFMO) 
techniques and nondominated sorting genetic algorithm (NSGA-II). Reaction temperature, 
methanol/oil molar ratio, and residence time were the input parameters. For the best Conver-
sion Efficiency (CE), which is more than 96.5 percent biodiesel content, optimization decreased 
Normalized Exergy Destruction (NED) and maximized functional exergy efficiency (FEE) and 
universal exergy efficiency (UEE) output parameters. With an R2 of 1, applied ANFIS models 
accurately predicted the FEE, UEE, NED, and CE parameters. 

In order to optimize the production of biodiesel, Aung et al. [108] examined the analysis 
sensitivity, predictability and generalizability, and parametric effects of ANN and RSM. At the 
optimal temperature, ethanol-to-oil molar ratio, beginning CO2 pressure, reaction time, and 
temperature—where the temperature was the most effective-97.42 percent of the Fatty Acid 
Ethyl Ester (FAEE) content were attained. When it came to predicting the FAEE content of 
mahua oil and data fitting, ANN model outperformed RSM. 
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By improving crucial process parameters in the synthesis of biodiesel from vegetable oil, 
Kumar et al. [48] were able to maximize the purification of crucial compounds while lowering 
energy needs. The process model requires inputs for the following variables: dryer tempera-
ture, flux ratio, water mass flow rate, water temperature, flash temperature, number of trays, 
and water temperature. Among all other designs, the one that proves the lowest specific en-
ergy consumption and meets the required biodiesel quality parameters was identified. All of 
the current two-phase equilibrium between liquids in the biodiesel production system, includ-
ing those between glycerol, low molecular weight alcohols, water, fatty acids, and biodiesel, 
were predicted and validated by Noriega et al. [109] using Group Interaction Parameters (GIP). 
According to the findings, the amount of carbon, the presence of hydroxyl groups, and un-
saturated bonds all have an impact on liquid-liquid equilibrium. The overall mass fraction of 
the distributed components was also found to be the most important parameter, followed by 
the length of the alcohol chain. 

Hassan et al. [110] used virtual sensors and an extended Kalman filter (EKF) to assess and 
estimate operating conditions variables, regulate performance, and track the response. Per-
formance study was done to assess the jatropha oil-based biodiesel utilizing alcohol, triglyc-
erides (TG), methyl ester, diglycerides (DG), glycerol (GL), and monoglycerides (MG) concen-
trations because there are only a few quantifiable factors, such as PH and temperature. 
Talaghat et al. [26] developed an ANN superstructure model to pinpoint the best biodiesel 
production site and operating conditions. The ANN model served as a workable replacement 
for the thermodynamics, unit operation, and mixing models by offering a less intricate illus-
tration of the synthesis procedure. As previously mentioned, the SO3HZnO catalyst was used 
by Soltani et al. [88] to apply ANN to model various reaction parameter effects. The 18-minute 
reaction time, the reaction temperature of 160°C, the calcine temperature of 700°C, and the 
Zn concentration of 0.004 moles were determined to be the ideal conditions. The zinc content 
and reaction time were the variables that worked best and worst. 

6. Conclusions 

The most popular ML techniques in the soil stage, according to the machine learning appli-
cations in this study, are Random Forest, Gaussian Process Model, and Support Vector Ma-
chines. The most widely used techniques in feedstock phase investigations include ANN, mul-
tiple linear regression, statistical regression, and multiple nonlinear regression models. The 
usual input parameters include blend composition, temperature, mixing duration, and speed. 
The usual output parameters include viscosity, flash point, oxidation stability, density, me-
thane fraction, higher heating values, and cetane number. The most popular machine learning 
technique for predicting quality is an ANN developed by a regression model, which uses input 
variables such as reaction temperature, reaction time, calcination temperature, pressure, and 
flow rate and output variables such as FAME content, viscosity, composition, quantity, cetane 
number, and density. The most popular ML method for yield estimation is ANN combined with 
ANFIS, using the following parameters: temperature, reaction time, catalyst concentration, 
total volatile fatty acid of the effluent, and methanol-to-oil molar ratio. Additionally, regular 
output variables include percent FAME yield, biogas production rate estimation, yield, and 
production of biodiesel. ANN, along with GA-based ANFIS and SVM, is the most popular ma-
chine learning technique for maximizing yield and quality section. The most often utilized input 
parameters are the methanol-to-oil molar ratio, stirring rate, catalyst concentration, reaction 
time, and reaction temperature. The output variables that are most frequently used include 
FAME yield, biodiesel yield, high heating value density, and oil's ultimate acid value. In the 
process efficiency and optimization section, ANN and ANFIS are the most important ML tech-
niques. The following are frequently used input variables: reaction time, concentration, water 
content, methanol-to-oil molar division, and temperature. The following are commonly used 
output variables: CE, Universal Exergy Efficiency (UEE), FAME content, biodiesel yield, and 
functional exergy efficiency. ANN, ANFIS, ELM, and SVM Machine Learning methods were em-
ployed to study consumption, engine performance, and emission. 
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