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Abstract 

Precipitation of asphaltene, which is a complex hydrocarbon mixture, causes serious problems during 

petroleum production. Some problems associated with precipitation of asphaltene includes reduced oil 
recovery and relative permeabilities, blockage of rock pores, and reduction of flow rate. There is a 

number of issues (cost, time, and difficulty and accuracy of measurements) with regards to laboratory 

measurements and therefore it is important to develop reliable models to predict the phase behaviour 
of asphaltene precipitation. In this study, accurate models were developed using gene expression 

programming (GEP), decision tree (DT), and least squares support vector machine (LSSVM) metho-

dologies for the determination of asphaltene precipitation from Iranian crude oil. To this end, molecular 
weight of precipitant (n-alkane), temperature, and ratio of precipitant (n-alkane) to oil dilution are 

considered as input variables for estimating the amount of precipitated asphaltene. The results 

obtained in this study reveal a satisfactory agreement between the values estimated by both the 
LSSVM and GEP models (compared to the developed DT model), to experimental data for asphaltene 

precipitation. Finally, the results obtained by the models developed in this study are compared with 

the results of a previously reported algorithm (i.e. artificial neural network) as well as the available 
empirically derived methods. The results show that models developed in this study are reliable, and 

superior to those comparative methods studied. 
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1. Introduction  

Asphaltenes molecules are complex structures and heaviest part of crude oils that cannot 
be dissolved in some light hydrocarbons e.g. n-pentane, n-heptane, and n-decane [1]. The 
precipitation of asphaltenes from crude oil is directly associated with its stability conditions 

including changes in reservoir pressure and temperature as well as chemical composition of 
petroleum fractions [2-3]. As a result, precipitation of asphaltene is known as a problematic 
phenomenon in petroleum industry in particular during oil production from hydrocarbon reser-
voirs to the pipelines. In petroleum industry, the precipitation of asphaltene can cause serious 
problems including reduced oil recovery and relative permeabilities, blockage of rock pores, 

and reduction of flow rate. As a matter of fact, asphaltene precipitation causes the reduction 
of relative permeabilities with change of reservoir rock wettability from water-wet rock to oil-
wet rock which can decrease the oil recovery factor [4-5]. Additionally, wellbore damage with 
blocking the rock pores, and the reduction of processing facilities capability with plugging of 
surface pipelines during petroleum production are two other serious problems associated with 

asphaltene precipitation [6]. Furthermore, asphaltene precipitation is an important issue in 
enhanced oil recovery processes in particular carbon dioxide flooding. During injection of car-
bon dioxide into wells, contacts between the oil and injected CO2 can change the reservoir 
fluid properties and also its phase equilibrium conditions, and consequently cause precipitation 
of heavy and complex hydrocarbon mixtures or asphaltenes [7]. Here, it is worth mentioning 
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that the type and amount of asphaltene precipitated from the crude oils may differ from one 
geographical location to another because of nonuniformity of petroleum reservoirs in terms of 
oil gravity and density [8]. 

There is a significant number of attempts made by researchers to address the asphaltene 
precipitation during petroleum production. Loureiro et al. [9] studied effect of carbon dioxide 

and n-heptane on the behavior of asphaltene precipitated. To this end, they employed ultra-
violet–visible (UV–vis) spectrometry to monitor phase behaviour of asphaltene precipitation. 
Hemmati-Sarapardeh et al. [10] developed a SARA fraction based model using least square 
support vector machine (LSSVM) algorithm for the estimation of asphaltene precipitation of 
Iranian oils. They indicated that the results obtained by their developed model are in satisfac-

tory agreement with the corresponding experimental data. Zendehboudi et al. [11] performed 
some laboratory tests on asphaltene precipitation to observe the influence of mixture compo-
sition, temperature, pressure, pressure drop, and dilution ratio. They also compared the ob-
tained results with an artificial neural network (ANN). They found that temperature and pres-
sure drop have significant impacts on the precipitation of asphaltene. Ju et al. [12] developed a 
3D multiphase model indicating the carbon dioxide transport into reservoir and precipitation 

of asphaltene. In the study, they observed the influence of asphaltene precipitation on the 
petroleum production trend during CO2 injection. The results obtained in the study indicates 
that the permeability and production rate decrease with the precipitation of asphaltene. Lei et 
al. [13] conducted an experimental investigation as well as modeling approach to study asphal-
tene precipitation inducted with carbon dioxide flooding. Shahebrahimi and Zonnouri [14] de-

veloped a thermodynamics model for the determination of asphaltene precipitation. The model 
is composed of Flory–Huggins as well as None Random Two Liquid (NRTL) models. The ob-
tained results demonstrate a satisfactory precision between the model values and experi-
mental data. 

In this study, reliable models were developed using gene expression programming, decision 

tree (DT), and least squares support vector machine methodologies for the determination of 
asphaltene precipitation from Iranian crude oil. Finally, the results obtained by models devel-
oped in this study are compared with the results of a previously reported algorithm (i.e. artificial 
neural network) as well as the available empirically derived methods. 

2. Asphaltene scaling approach 

As a result, existing thermodynamic models may have some short comings in phase be-
havior modeling of asphaltene precipitation. In other words, thermodynamics approaches 
need precise characterization of reservoir fluids and asphaltene, and sometimes modeling with 
thermodynamic methods is difficult because of complex nature of such techniques. Moreover, 
some of them may have convergence problems. Therefore, presenting alternative and easier 

methodologies such as asphaltene scaling approach may be of importance. To this end, Ras-
samdana et al. [15] proposed a two-variable scaling equation as a function of precipitant to oil 
dilution ratio (R), and precipitant molecular weight (M) for predicting the phase behaviour of 
asphaltene precipitation. Later, Rassamdana and Sahimi [16] modified the scaling equation 
proposed by Rassamdana et al. [15] by observing the influence of temperature (T). The as-
phaltene scaling equation proposed by Rassamdana et al. [15] is formulated as follows: 

𝑋 =
𝑅𝑣

𝑀𝑧
                                                                                                                                                (1) 

𝑌 =
𝑊

𝑅𝑣
𝑧′                                                                                                                                              (2) 

where Rv stands for the precipitant to oil dilution ratio; M expresses the precipitant molecular 
weight, and z and z’ denote the tuning parameters of the above equations. Regardless of oil 
and precipitant applied in the experiments, z and z’ should be considered 2 and –2 [15]. The 

scaling equations mentioned above can be expressed with a new form through a polynomial 
function as below: 
𝑌 = 𝐴1 + 𝐴2𝑋 + 𝐴3𝑋2 + 𝐴4 𝑋3     (𝑋 ≥ 𝑋𝑐)                                                                              (3) 
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where Xc denotes the value of X at the onset point of asphaltene precipitation, and A1, A2, 
A3, and A4 are considered as the scaling coefficients. As mentioned earlier, Rassamdana and 
Sahimi [16] modified the scaling equation by considering the influence of temperature as fol-
lows: 

𝑥 =
𝑋

𝑇 𝐶1
                                                                                                                                               (4) 

𝑦 =
𝑌

𝑋𝐶2
                                                                                                                                               (5) 

𝑦 = 𝑏1 + 𝑏2𝑥 + 𝑏3𝑥2 + 𝑏4𝑥3     (𝑥 ≥ 𝑥𝑐 )                                                                                   (6) 
In Eqs. (4-6), X and Y are same variables which are defined by Eqs. 1 and 2, C1 and C2 

denote the adjustable parameters of the asphaltene precipitation scaling equation (a good fit 
of experimental data of asphaltene precipitation with predicted values by Eqs. (4-6) is obtained 

at C1=0.25 and C2=1.6), and b1, b2, b3, and b4 are considered as the coefficients of third-order 
polynomial scaling equation regarding effect of temperature. 

3. Asphaltenic crude oil data 

According to the asphaltene scaling equations proposed by Rassamdana et al. [15] and Ras-
samdana and Sahimi [16], the precipitant to oil dilution ratio, temperature, and precipitant 

molecular weight are the most important parameters for predicting the amount of precipitated 
asphaltene (Wt). To forecast phase behaviour of asphaltene precipitation, an asphaltenic crude [17] 
with oil density of 0.934 g/cc taken from one of the Southwestern reservoirs in Iran was used 
to pursue our modeling target in this study. The SARA analysis of asphaltenic crude oil is as 
follows: saturates=29.3 wt. %, aromatics=35.2 wt. %, resins=27.2 wt . %, and asphal-

tenes=8.3 wt. %. The temperatures tested for measuring the amount of precipitated asphal-
tene are 30, 50, and 70°C, which were undertaken at atmospheric pressure. Furthermore, at 
different dilution ratios, three asphaltene precipitants including n-pentane, n-hexane, and n-
heptane were used. Table 1 summarizes the ranges of parameters applied for estimating the 
amount of precipitated asphaltene related to Iranian crude oil [17]. 

Table 1. Ranges of the parameters applied for asphaltene precipitation 

Property Unit Minimum Average Maximum Role 

Asphaltene precipitation wt % 0.5 4.78 10.4 Output 

MW – 72.15 68.18 100.21 Input 

T °C  30 50 70 Input 
Rv mL/g 0.67 7.61 20 Input 

4. Model development 

4.1. Least squares support vector machine 

The support vector machine (SVM) algorithm analyzes data and identif ies patterns applied 
for solving classification and regression problems which was developed on the basis of struc-

tural risk minimization and statistical learning theory [18-19]. Suykens and Vandewalle [18] pre-
sented LSSVM methodology, which is a modified version of classical SVM algorithm introduced 
by Vapnik [20]. Quadratic programming is applied to solve classical SVM form which is often 
convoyed by large memory requirement and time-consuming while LSSVM strategy imple-
ments equality constraints to replace the original convex quadratic programming problem [21]. 

In the presence of a dataset {(𝑥1, 𝑦1),… , (𝑥𝑚,𝑦𝑚)}∁𝑛 ×, where each output 𝑦𝑖 ∈ and the input 

𝑥𝑖 ∈, LSSVM for regression problem is introduced as minimization of the following formula [22-23]: 

min𝐽 (𝑤,𝜉) =
1

2
‖𝑤 2‖+

1

2𝜇
∑(𝜉𝑖)

2

𝑚

𝑖=1

                                                                                              (7) 

𝑠. 𝑡. ∶ 𝑦𝑖 = 𝑤𝑇𝜑(𝑥𝑖) + 𝑏 + 𝜉𝑖 , 𝑖 = 1,2,… , 𝑚 
where 𝜑(𝑥𝑖 ) is a nonlinear function which maps the input space into a higher dimensional 

space. By introducing Lagrange multipliers and exploiting the optimality constraints, the de-
cision function takes the following form: 
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𝑓(𝑥) = ∑ 𝛼𝑖𝐾(𝑥,𝑥𝑗)

𝑁

𝑘=1

+ 𝑏                                                                                                                     (8)  

where 𝛼𝑖  stands for the introduced Lagrange multiplier and K(x,xj) denotes the Kernel func-
tion as follows: 
𝐾(𝑥, 𝑥𝑘) = Φ(𝑥)𝑇.Φ(𝑥𝑘)                                                                                                                        (9) 

As a result, the radial basis function (RBF) Kernel was used in this study as formulated 
below [18,24-25]: 

𝐾(𝑥𝑖 ,𝑥𝑗) = exp (−‖𝑥𝑖 − 𝑥𝑗‖
2
/𝜎2)                                                                                                     (10) 

where 𝜎 is an adjustable parameter called kernel bandwidth. 

4.2. Decision tree 

The decision tree algorithm is one of the known artificial intelligence algorithm which is able 
to develop mathematical models to solve regression or classification problems with the shape 

of a tree structure. Decision trees can process both categorical and numerical data [26-28]. As 
a result, the DT algorithm splits a main databank into smaller ones while a related decision 
tree is incrementally proposed simultaneously. The outcome of this process is a main tree with 
decision and leaf nodes so that each decision node has two or more divisions. Furthermore, 
the leaf node illustrates a decision on the target. As a matter of fact, the top decision node in 

a tree is related to the best predictor so-called root node. As a consequence, classification and 
regression tree (CRT), chi-square automatic interaction detector (CHAID), Exhaustive CHAID, and 
quick-unbiased-efficient statistical tree (QUEST) are three kinds of the DT algorithm. The CRT 
is a recursive subdividing technique, which is used both for regression and classification [29-31]. 
The CHAID technique was established based on the X2-test of association [30,32]. The Exhaus-
tive CHAID procedure tries to solve the problem of optimum division by continuing to combine 

groups, regardless of significance level, until only two groups stay for each predictor [30,33]. 
Finally, the QUEST method is a binary split decision tree process for c lassification and data 
analysis.  

4.3. Gene expression programming 

Recently, Ferreira [34] developed an intelligent evolutionary algorithm called gene expres-

sion programing which is able to construct symbolic models mathematically. In GEP approach, 
control parameters, function set, fitness function, terminal set, and termination condition are 
recognized as the key components [35]. Those parse trees are known as expression trees (ETs) 
for the GEP algorithm [36]. Hence, the nature of gene expression programming authorities the 
evolution of more complex programs composed of various substructures or subprograms so-

called GEP genes. For illustrating the mathematical performance of the GEP methodology in 
developing symbolic models, a simple GEP-based equation counting a chromosome composed 
of two genes connected together by a multiplication fitness function is expressed as follows: 

(𝑢 ∗ 𝑣) + (
f

l
)                          (11) 

where u, v, f and l express the input variables for estimating the target variable (asphaltene 

precipitation), and /, * and + stand for the fitness functions. 

5. Results and discussion 

In this study, three reliable models were developed to estimate the amount of asphaltene 
precipitated from a crude oils extracted from Iranian reservoirs. To this end, asphaltene pre-
cipitation models are considered as a function of precipitant to oil dilution ratio, temperature, 
and precipitant molecular weight. As mentioned earlier, the LSSVM modeling approach has 

two adjustable parameters including γ and σ2 which should be adjusted through an external 
optimization methodology. In this study, coupled simulated annealing (CSA)  [37-39] was em-
ployed for obtaining the optimum values of the LSSVM parameters. As a result, the values 
adjusted by the CSA approach for the LSSVM developed in this study to estimate asphaltene 
precipitation are 1.0465 and 927850.8749 for σ2 and γ, respectively. To develop a DT model, 
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we used the available MATLAB codes related to the regression DT approach. In regression DT 
approach, the Y variable takes ordered values and a regression model is fitted to each node 
to give the predicted values of Y [40]. 

To propose the GEP-based model, we applied one gene with 30 chromosome, and also 
average absolute relative deviation was utilized as accuracy function. The head size equals to 7 

and a function set including *, /, – and + is selected during applying the GEP methodology. 
To achieve a high accurate and more capable model, the stop condition of the algorithm was 
set on maximum generation with a best number of 72 thousands. The final model obtained by 
the GEP algorithm developed in this study is a simple-to-use with lowest possible coefficients 
as follows: 

𝑊𝑡 =
−0.9048 𝑅𝑣  (𝑀 −  188.76)

6.1211 𝑅𝑣  +  𝑇 +  33.302
                                                                                                     (12) 

where Wt denotes the amount of precipitated asphaltene (wt. %), M stands for the precipitant 
molecular weight, T expresses the temperature (°C), and finally, Rv is the precipitant to oil 
dilution ratio (mL/g). 

In this study, an important error parameter called average absolute relative deviation 
(AARD) was used for measuring the accuracy and prediction capability of the developed mod-

els as follows: 

exp rep./pred 

1 exp

1
% | | 100

n

i

X X
AARD

n X


                 (13) 

Furthermore, AARD error parameter was applied to compare the results obtained by the 
models developed in this study with the results obtained by the artificial neural network model 
proposed by Ashoori et al. [17] and their scaling equation as well as asphaltene scaling equa-
tions presented by Hu and Guo [41] and Rassamdana et al. [15]. 

 

 

Fig. 1. AARD calculated for the developed models 
as well as the comparative methods investigated 

in this study 

Fig.1 illustrates the graphical comparison 
of AARD calculated for all models developed 
in this study (e.i. the LSSVM, DT and GEP-

based models) and ANN modeling approach, 
as well as three asphaltene scaling equations 
proposed by Ashoori et al. [17], Hu and Guo 
[41], and Rassamdana et al. [15]. To compare 
all models investigated in this study, two 

panels including smart techniques and sym-
bolic equations should be considered. In the 
smart techniques panel, the LSSVM model 
developed in this study has the highest ac-
curacy in comparison with the DT and ANN 
models. The AARD reported for the LSSVM 

model is 3 %, while AARDs calculated for the 
ANN and DT models are 5 and 11%, respec-
tively. 

In another panel, the equation developed based on the GEP approach is more accurate than 
the scaling equations proposed by Ashoori et al. [17], Hu and Guo [41], and Rassamdana et al. [15]. 

The AARD calculated for the methods mentioned earlier are 8.5, 10.9, 17.3, and 17.9, respec-
tively. 

To show the capability performance of the models investigated in this study, a graphical 
analysis in terms of parity diagram or crossplot and relative error distribution plot was per-
formed. To this end, four most accurate methods investigated (e.i. the LSSVM, ANN, DT, and 

GEP-based models) for estimating asphaltene precipitation were considered. Fig. 2 demonstrates 
the crossplots sketched for the four methods. As is clear from the figure, the distribution of 
data points obtained by LSSVM model around unit slope line is lower than the other methods. 
In other words, R-squared error obtained by the LSSVM model is higher than the ANN, DT, 
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and GEP-based models. Fig. 3 illustrates the relative error distribution plots for the LSSVM, 
ANN, DT, and GEP-based models. The figure clearly shows that the distribution of relative 
error around Y=0 (zero error) is lower than the other methods. 

  

  
Fig. 2. Crossplots for the different methods investigated in this study with respect to R-squared error 

To show smoothness performance of the models mentioned earlier, a trend analysis of the 

asphaltene precipitation versus precipitant to oil dilution ratio data was done at various tem-
peratures for n-pentane, n-hexane, and n-heptane. Figs. 4-6 indicate the trend plot of asphal-
tene precipitation changes versus dilution ratio at temperature of 30°C for n-pentane, n-hex-
ane, and n-heptane, respectively. Furthermore, Figs. 7-9 illustrate the changes of asphaltene 

precipitation versus precipitant to oil dilution ratio at temperature of 50°C for n-pentane, n-
hexane, and n-heptane, respectively. Finally, Figs. 10-12 show the changes of asphaltene 
precipitation at 70°C. As is clear from the figures, the data points related to the LSSVM model 
are matched with the experimental values better than the other model.  

This clearly shows that the LSSVM model is more capable for the estimation of asphaltene 

precipitation as a function of temperature, precipitant to oil dilution ratio and precipitant mo-
lecular weight. Additionally, the model proposed by LSSVM approach has only two adjustable 
parameter, while the other methods require more parameters. As a result, the high number 
of adjustable parameters can increase the error of a model considerably. The result s obtained 
in this study confirm this fact that they are appropriate for the prediction targets in petroleum 
industry, and also simulating the heavy organics precipitation such as asphaltene. 
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Fig. 3. Graphical relative error distribution analysis for the different methods investigated in this study 

 

  
Fig. 4. Trend plot of asphaltene precipitation 

changes versus dilution ratio at temperature of 

30°C for n-C5  

Fig. 5. Trend plot of asphaltene precipitation 

changes versus dilution ratio at temperature of 

30°C for n-C6 

 

1004



Petroleum and Coal 

                          Pet Coal (2019); 61(5): 998-1008 
ISSN 1337-7027 an open access journal 

  
Fig. 6. Trend plot of asphaltene precipitation 

changes versus dilution ratio at temperature of 

30°C for n-C7  

Fig. 7. Trend plot of asphaltene precipitation 

changes versus dilution ratio at temperature of 

50°C for n-C5  

 

  
Fig. 8. Trend plot of asphaltene precipitation 
changes versus dilution ratio at temperature of 

50°C for n-C6  

Fig. 9. Trend plot of asphaltene precipitation 
changes versus dilution ratio at temperature of 

50°C for n-C7  

  
Fig. 10. Trend plot of asphaltene precipitation 

changes versus dilution ratio at temperature of 
70°C for n-C5  

Fig. 11. Trend plot of asphaltene precipitation 

changes versus dilution ratio at temperature of 
70°C for n-C6  
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Fig. 12. Trend plot of asphaltene precipitation 

changes versus dilution ratio at temperature of 

70°C for n-C7  

 

6. Conclusions  

An Iranian asphaltenic crude oil was used to study the changes of amount of precipitated 

asphaltene versus precipitant to oil dilution ratio at different temperatures. Applying the data, 
it was found that the previously reported scaling equations are not fully accurate and satis-
factory. Therefore, most reliable modeling approaches including least squares support vector 
machine, decision tree and gene expression programming were developed in this study. To 

compare all methods investigated in this study, two panels were considered. In the smart 

based panel, the LSSVM approach has the highest precision so that could estimate the asphal-
tene with an AARD of 3%. In symbolic equations panel, the method proposed on the basis of 
GEP approach gave an acceptable AARD of 8.5 %. The methods developed in this study are 
applicable for the simulation of asphaltene precipitation softwares. Moreover, simple symbolic 
method presented in this study can be a reliable alternative for existing scaling equations and 

complex thermodynamic methods. 
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