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Abstract 
The mineralogy, thermal behaviour, physicochemical characteristics, and organic petrographic 
composition of Cretaceous coals from the Benue Trough were examined for their quality, paleo-
depositional environment, and the factors that control their coal-bearing formations. Seven coal 
samples were obtained from the Lower, Middle, and Upper Benue Troughs in Nigeria. The samples 
were examined through X-ray diffraction, Fourier transform-infrared spectroscopy, thermal gravi-
metry, and organic petrography. Minerals found detected were kaolinite, quartz, feldspar, hematite, 
magnetite, calcite, siderite, dolomite, orthoclase, graphite, and illite (unknown crystal plane). FTIR 
spectra confirmed the presence of clay minerals in the samples. Thermal analyses revealed weight loss 
due to moisture, volatile matter, and fixed carbon contents. The average of high volatile matter yields, 
low ash yield, high fixed carbon, and low sulphur indicate good quality coal. Vitrinite generally 
dominated the organic matter, accounting for 52.6 vol.% (mineral-free), with varying inertinite and 
liptinite contents. Liptinite macerals dominated the Obomkpa (BMK) sample. The analysed coal 
samples were accumulated in alternating oxic and anoxic moor conditions. DDG and SKJ coal samples 
were deposited in planar central mires with frequent flooding. OGB and BMK were deposited at the 
planar mire's lateral edge due to brief submergence. GMG and WKP were deposited in transitional-dry 
and transitional-wet mires, respectively. AFZ, BMK, DDG, OGB, WKP, and SKJ have high-GI and low 
TPI deposited in limno-telmatic facies or wet forest swamps with rapid organic matter accumulation. 
GMG has a low GI and a high TPI, indicating that terrestrial plants contributed significantly rather than 
microbial organic matter. 
Keywords: Cretaceous coals; Benue Trough; Mineralogy; Physicochemistry; Petrology; Depositional environments. 
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1. Introduction  

Coal is a sedimentary rock rich in organic material made of coalified vegetation [1]. The 
maceral and chemical contents of coal seams, however, differ greatly on both the lateral and 
vertical axes, indicating that the characteristics of any small number of coals can be taken 
into account as an accurate depiction of samples [2]. Many studies have examined the petro-
leum potential of terrestrial coal sediments [3-5]. 

According to [6-8], the organic matter present in shales (coaly shales) and coal horizons are 
prospective sources of oil and gas. It may be helpful to forecast the depositional conditions 
that lead to the formation of coals with high liptinite or per-hydrous vitrinite levels. Most oil-
bearing coals are Jurassic-Cenozoic due to the dispersion of such coals in time and space [2]. 
In addition, the amount of inorganic transition elements in crude oil has a considerable impact 
on the type of source rock, depositional conditions, and maturity. This is the case because 
diagenetic or in-reservoir modifications do not affect the ratio of transition elements in petro-
leum [9-11]. 

The Benue Trough (BT) and other basins in Nigeria have seen several discoveries of coal 
and liquid hydrocarbon resources over the years [12-20]. Despite the many findings, the paleo-
depositional context that predominated peatification and coalification in the BT coals has re-
ceived little attention in the literature. 

For example, the depositional environment of Cretaceous coals and the coal sequence 
around the Obi/Lafia portion of the Middle BT in northern Nigeria was described by Obaje [21]. 
In addition Ogala [22], investigated the paleoenvironments in which lignite from southern Ni-
geria's Ogwashi-Asaba Formation was deposited. Some authors [20,23] investigated the paleo-
depositional environments that influenced a few specific coal-bearing formations in the Lower, 
Middle, and Upper BT Basins. Due to the absence of specific information on several recently 
discovered coal deposits in the BT Basin, there are significant chances to examine and com-
prehend their depositional conditions. The present study seeks to critically analyze the quality 
and depositional settings of selected Cretaceous coals through combined mineralogy, physi-
cochemistry, thermal gravimetry, and organic petrography approaches. 

2. Geology of the study area 

The West-Central African basement was split at the start of the Cretaceous period, forming 
the Nigerian Benue Trough (BT), a linear lithospheric zone. The BT consists of around 6,000 
meters of Cretaceous sediment, while earlier sediments were faulted, folded, and occasionally 
elevated before the mid-Santonian [24]. Geological evidence indicates lakes and rivers depos-
ited sediments that eventually formed the Trough. The BT was likewise created when the 
Atlantic Ocean was expanding in the early Cretaceous [25]. Geographically, the BT spans 800 
km in length and 150 km in width from NNE to SSW [26]. The northernmost edge of the BT is 
situated south of the boundary with the Chad Basin and the southern border is located at the 
northern frontier of the Niger Delta (Fig. 1) [27]. A strike-slip system of axial faults, locally 
developing compression, and tensional regimes actively governed the tectonic evolutions of 
the BT [25]. Basement horsts and basins were produced due to the subsequent thermal dis-
turbances, lithospheric stresses, and rheology, which either constrained or released some 
fault-based bends [25,28] proposed a model that focused on the development and end of the 
mantle upwelling beneath the Cretaceous hot spot. The associated configurations of doming, 
magmatism, rifting, tectonism, and sedimentation are proposed for the rift zone in the BT. 
The Lower, Middle, and Upper regions make up the three sections of the BT (Fig. 1). The most 
significant towns (localities or villages) that make up the centres of the various regions are 
frequently described in the literature [26,29-30], even though the boundary of the distinct areas 
is not clearly defined.  
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Figure 1. Geological map showing the Benue Trough Basin with inset sampling locations. 

 
Figure 2. Stratigraphy of the Benue Trough (adapted from [14]). 
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According to its stratigraphic context (Fig. 2), the maritime Neocomian-Albian Asu River 
Group and the Lower Benue Trough (LBT) were the two main initiators of sedimentation. 
However, there aren't many reports about specific pyroclastics from the Aptian to the Early 
Albian age [31-32]. According to [28], the Asu River Group sediments in the LBT mainly comprise 
siltstones, isolated sandstones, limestone, and shales. In addition, the deposits consist of ex-
trusive and intrusive residues in the Abakaliki Formation and Mfamosing Limestone in Abakaliki 
and the Calabar Flank, respectively [26,33-35]. Nigeria's most significant and purest limestone 
resources (96% CaCO3) are located in the shallow-water Albian strata near  

Mfamosing, which are actively mined for cement manufacturing [36-37]. According to nu-
merous reports, BT and other sedimentary basins in Nigeria have mineral resources with sig-
nificant commercial potential [27,38]. Barites, clay, glass sand, gypsum, phosphate, limestone, 
cassiterite, ironstone, manganese, mica, silver, uranium, and, in particular, coal are selected 
examples [24,38]. Most coals in the BT are non-coking [24,38]. Nonetheless, the coals could be 
utilised for chemicals, synthetic fuels, fertilizer, or coal-fired electricity production [39-40].  

3. Materials and methods

3.1. Coalfield locations and sampling

Samples from the coal mines were obtained using proportionate layered random sampling. 
To gather new and representative samples, this sampling strategy involves collecting the coal 
sample fractions in each seam or stratum according to the thickness of the band (lithotype). 
Each coal sample weighed around 200 g and was placed into a zip-locked polythene bag before 
being delivered to the laboratory for testing. The labels on the coal samples examined are; 
AFZ for Afuze coal, BMK for Obomkpa coal, DDG for Duduguru coal, GMG for Garin Maiganga 
coal, OGB for Ogboligbo coal, SKJ for Shankodi-Jangwa coal, and WKP for Owukpa coal. 

3.2. Sample preparation 

The coals were prepared according to the ASTM D-2013 standard operating procedures [41]. 
The samples are cut with a sample riffler before being crushed by a hammer mill to a particle 
size below 2.36 mm (mesh size 8). The crushed materials were pulverized and sorted into 
particle sizes below 850 m (20 mesh) using a plate grinding mill before petrographic investi-
gation. The leftover material was recrushed in a pulveriser and then sieved into particles below 
250 microns (mesh size: 60) for laboratory analyses. 

3.3. Laboratory analytical techniques 

The collected coal samples were investigated through X-ray diffraction analysis (XRD) and 
Fourier transform infrared spectroscopy (FTIR) to examine their chemical properties and bulk 
mineralogy, respectively. The physicochemical studies determined the proximate, ultimate, 
and calorific values, whereas organic petrographic analysis examined maceral composition. 
Sections 3.2.1 through 3.2.5 illustrate the detailed procedures. 

3.3.1. X-ray diffraction 

The pulverised coal samples were examined using an X-ray diffractometer (Rigako Ultima 
IV) at a voltage of 40 kV, current of 40 MA, and power of 1.6 kW. The XRD data were collected 
using the target Cu-K (a = 1.5406A) based on the following parameters: 2.00 as the beginning 
angle, 90.00 as the stopping angle, and 0.02 as the step angle. Peaks were identified using 
the Rigaku PDXL 1.2.0.1 library database connected to the apparatus.

3.3.2. FTIR analysis 

Using an FTIR spectrophotometer (System-2000, Perkin-Elmer), FTIR spectra of the coal 
samples were captured in transmittance mode at 4 cm-1 spectral resolution. Potassium bro-
mide (KBr) powder was used to create sample pellets using a hydraulic pellet press. 
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3.3.3. Physicochemical analysis 

Thermal gravimetric analysis (TGA Model: LECO, USA) was used to assess the coal's proximal 
properties including moisture, volatile matter, ash, and fixed carbon. The analyses were per-
formed according to ASTM D7582-12 [42] norms. According to the ASTM D4239-12 standard [43], 
the LECO carbon/sulfur analyzer completed the total carbon and sulfur analyses. According to 
the ASTM D3176-15 test protocol, the final analysis (C, H, N, S, and O) was determined on 
the LECO CHN analyzer [44]. Each test was run three times. 

3.3.4 .Thermal gravimetric analysis (TGA) 

Thermal analysis was conducted using a thermal analyzer (LECO TGA 701 Thermal gravi-
metric analyzer) in a nitrogen atmosphere at a heating rate of 10°C min-1 from room temper-
ature to 900°C using an Al2O3 crucible. 

3.3.5. Organic petrography 

The Leitz Orthoplan Microscope (USA), equipped with an oil immersion objective and re-
flected light (magnification 50×), was used to examine the petrologic analysis of the coal 
samples. Each sample was prepared as an epoxy-bound particle pellet with a final alumina 
polish of 0.05 microns following ISO 7404-2 [45]. Based on ASTM D7708-14 [46], the composition of 
the scattered organic matter in the coal samples was determined. The reports on the maceral 
compositions are presented using nomenclature from Pickel et al. [47] and the ICCP [48-49]. 
Without combining the low-rank and bituminous nomenclature specified in Skorová et al. [50], 
the entire coal count for vitrinites conforms to the ICCP [48]. The vitrinite reflectance was 
measured using photometer equipment following ISO 7404-5 [51] standard. According to ISO 
7404-5 [51], the vitrinite reflectance was measured using a photometer system and polarized 
light that was incident at a 45° angle and passed through a 546 nm grating. 

4. Results and discussion

4.1. Coal mineralogy

According to the diffraction pattern (Fig. 3), samples B-1 to B-7 (i.e., AFZ, DDG, BMK, OGB, 
GMG, SKJ, and WKP) contain minerals with various crystal planes. Minerals found in the sam-
ples were mainly kaolinite (001, 020, 110, -223), quartz (101, 110, 102, 103, 211), feldspar 
(-202, -222, -422), hematite (104, 110, 006, 116), magnetite (440), calcite (012, 104, 300), 
siderite (012, 113, 125), dolomite (12-4), orthoclase (-201), graphite (110), and illite (un-
known crystal plane). 

4.2. FTIR analysis 

The broad absorption band at 3434 cm-1, caused by N-H and O-H groups, can be seen in 
the FT-IR spectra (Fig. 4). Other O-containing functional groups, such as phenols and alcohols, 
ethers, carboxylic acids, and carbonyls, may also be responsible for the sharp peaks of me-
dium intensity at 2923 cm-1 and 2852 cm-1. A prominent band at 1460 cm-1 may be due to 
bridges comprising the CH2 group and asymmetric CH3 deformation. The clay minerals [52] 
observed in the XRD spectra are primarily represented by the peaks between 1100 and 400 
cm-1 in the FTIR spectra of coals.

4.3. Thermal analysis

The TGA graph depicts the change in weight due to sequential losses of moisture (0–130°C), 
volatile matter (130–400°C), and fixed carbon (400–800°C) combustion (Fig. 5). At about 
800°C, the highest mass loss of up to 75% occurred; after that, no more weight loss was 
observed in the thermogram. This observation indicates that ash and other inorganic materials 
make up the residual mass. Fig. 5. TGA graph of the samples demonstrating percentage weight 
loss at three distinct intervals with temperature increase. 
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Figure 3. X-ray diffraction patterns of samples B-
1 to B-7 (K = Kaolinite, F= Feldspar, Q = Quartz, 
H = Haematite, M= Magnetite, O = Orthoclase, 
S=Siderite, C = Calcite, D = Dolomite, I = Illite, 
and G = Graphite). 

 
Figure 4. FTIR spectra of the samples exhibiting 
absorption peaks caused by the presence of func-
tional groups and clay minerals. 

 
 

Fig. 5. TGA graph of the samples demonstrating percentage weight loss at three distinct intervals with 
temperature increase. 
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4.4. Coal facies 

The results of the organic petrography are shown in Table 1 and Figs. 6–11, while Table 2 
shows the findings of the proximate and ultimate analyses.  

Table 1. Results of organic petrographic analysis. The first column lists the entire amount of minerals, 
but the second column normalizes the mineral content without including minerals. 

 
Table 2. Results of proximate and ultimate analyses H = Hydrogen, O = Oxygen, C = Carbon, TS = Total 
Sulphur, N = Nitrogen, TPI = Tissue preservation index, GI = Gelification index. 

Sample AFZ BMK DDG GMG OGB SKJ WKP 
Ash % 4.36 25.36 16.99 7.49 49.03 5.71 5.93 
M % 2.5 4.17 3.89 8.04 2.52 6.26 6.55 
C % 74.47 49.19 60.52 61.67 33.83 66.26 68.02 
H % 5.87 5.37 4.78 4.37 3.16 5.69 5.11 
N % 1.6 0.64 1.33 1.02 0.8 1.2 1.54 
TS% 1.57 2.03 0.77 0.37 3.13 2.47 0.62 
O % 12.13 17.41 15.61 25.08 10.77 18.67 18.78 

VM % 47.76 48.72 38.81 40.81 27.35 52.6 41.16 
FC % 45.38 21.75 40.31 43.66 21.1 35.43 46.36 
Aver. 21.74 19.40 20.33 21.39 16.85 21.59 21.56 
H/C 0.08 0.11 0.08 0.07 0.09 0.09 0.08 
O/C 0.16 0.35 0.26 0.41 0.32 0.28 0.28 
C/N 46.54 76.86 45.50 60.46 42.29 55.22 44.17 
TS/C 0.02 0.04 0.01 0.01 0.09 0.04 0.01 

IV factor 21 43 13 55 36 18 38 
TPI 0.48 0.76 0.76 1.53 0.76 0.41 0.92 
GI 3.88 1.35 8.17 0.82 1.96 5.13 1.81 

According to [53], coal's mineral composition can be used to decipher the depositional en-
vironment (Fig. 12). The model makes it possible to comprehend how the ratio of subsidence 
differs in wet and dry territories. The coals AFZ, DDG, GMG, SKJ, and WKP were accumulated 
in alternating oxic and anoxic moor environments (Fig. 12). According to [54], this may be 
related to ocean level changes and eustatic settlement. BMK and OGB, on the other hand, 
were deposited in moist moors that frequently experienced moderate to high floods, which 
resulted in a more significant influx of mineral materials. The illustration in Figure 13 provided 
by Misiak [55] highlights the significance of water levels in coal production. The peat bog's 
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water surface affects the presence of maceral components. According to Misiak [56], the long-
term stages of the mire's flooding and drying needed gradual changes for the plant community. 
 

 
Fig. 6. Vitrinite. (A) Telovitrinite (tv) and micrinite (mic) bands (Image DDG)  (B) Detrovitrinite (dv) with 
resinite (r), funginite (fg), and micrinite (mic) (Image AFZ)  (C) Corpogelinite (cg), fusinite (f), semi-
fusinite (sf), and funginite (fg) (Image DDG)  (D) Detrovitrinite (dv) (Image SKJ). 

 
Figure 7. Funginite.  (A) Fungal sclerotia with vitrinite (v), fusinite (f), and resinite (r) (Image AFZ) (B) 
Fungal sclerotia with vitrinite (v) (Image DDG) (C) Funginite with vitrinite (v) (Image SKJ) (D) Funginite 
(Image WKP). 
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Figure 8. Macrinite (m) with fusinite (f), semifusinite (sf), and vitrinite (Image WKP).   

 
Figure 9. Micrinite (mic) (A) Image GMG 02 (B) Image GMG 03 (C) Image GMG 06 (D) Image GMG 09.   
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Figure 10. Cutinite (A) White-light images of cutinite (c) in vitrinite (B) blue-light images of cutinite (c) 
in vitrinite (Image AFZ 07) (C) Blue-light image of cutinite with resinite between cutinite leaves (Image 
WKP 08)  (D) Blue-light image of cutinite  (Image BMK 02)  (E) Blue-light image of cutinite ( Image WKP 
06)  (F) White-light images of cutinite with vitrinite & G) blue-light images of cutinite with vitrinite. Note 
the papillate surface texture on cutinite (Image BMK 05). 

 
Figure 11. Resinite (A) White-light images of resinite (r) in vitrinite (B) blue-light images of resinite (r) 
in vitrinite. (Image AFZ 06)  (C) Resinite (r) (Image BMK 04) (D) Resinite (r) (Image DDG 15) (E) White-
light images of resinite (r) in vitrinite (Image SKJ 08) & (F) blue-light images of resinite (r) in vitrinite 
(Image SKJ 08). 
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Fig. 12. Depositional condition of the coals studied based on maceral and mineral matter (Adapted from 
Singh and Singh [54]). 

 
Figure 13. Sedimentary environments of the coals studied, modified from Misiak [56]. DEM = detrital 
matter, I = inertinite, L = liptinite, V = vitrinite. 
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In contrast to DDG and SKJ, which were deposited in planar central mires (also constantly 
inundated), the coals from OGB and BMK were deposited in the planar margin mire. Although 
temporarily flooded, the GMG and WKP coals were placed in transitional-dry mires and tran-
sitional-wet mires, respectively. The GMG and WKP coals' high inertinite percentages (51.9% 
and 32.5%, respectively) and propensity for more mires suggest drier conditions. The com-
position of macerals suggests that this process occurs within the ecological amplitude of a 
certain plant assemblage and causes only minor changes. Misiak [56] contends that the rela-
tively fast oscillations in the water level do not always compel the succession of plants. The 
inorganic materials associated with organic molecules, dissolved salts in the pore water, and 
discrete crystalline/non-crystalline particles are all examples of mineral matter in coal [57]. 
According to [58], Figure 14 demonstrates the importance of the mineral matter composition 
in coal. High water content intensifies the gelification process, as indicated by the high vitrinite 
composition. According to this observation, the mineral matter was deposited in basins suscepti-
ble to disintegration in the flooded mire, whereas higher inertinites show low water levels [59].  

 
Fig. 14. Diagram of the coal facies analysis of the coals studied, adapted from [58]. DEM = detrital 
matter, I = inertinite, L = liptinite, V = vitrinite. 

Mineral content below 5% is typically associated with tissue degradation, while mineral 
above 5% indicates that water has entered the mire. Fluvial systems are associated with 
mineral matter contents significantly higher than 10% [56]. Mineral matter concentrations 
above 10% in the coals from the OGB and BMK indicate tissue disintegration. In comparison, 
concentrations below or equal to 25% in AFZ, DDG, and SKJ and above or equal to 25% in 

1166



Petroleum and Coal 

                          Pet Coal (2024); 66(xy): xx-yy 
ISSN 1337-7027 an open access journal 

WKP and GMG indicate lacustrine deposits. The peats were created in low-lying marshes, 
whereas the coal deposits in the BT are autochthonous. 

Warbrooke [60] created the concept of coal facies by fusing maceral research with coal ash 
geochemistry. Warbrooke [61] used two criteria to describe the depositional conditions, using 
the well-known depositional setting of Hunter Valley coals as an example. 

𝐼𝐼𝐼𝐼𝑓𝑓𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 =
𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼

𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 + 𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉
× 100 (1) 

𝑆𝑆𝑆𝑆𝑆𝑆𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 =
𝑆𝑆𝑆𝑆𝑆𝑆2

𝑆𝑆𝑆𝑆𝑆𝑆2 + 𝐴𝐴𝐴𝐴2𝑂𝑂3
× 100 (2) 

According to the standards outlined by [60], the AFZ, DDG, and SKJ coals were dumped in 
swampy, wet woodland. However, the BMK, OGB, WKP, and GMG coals were deposited in a 
swampy, dry, or damp forest. However, caution should be exercised when applying the criteria 
above because inertinite and vitrinite contain various tangentially related and unrelated sub-
stances [61]. Diessel [62] proposed two coal facies indices, tissue preservation index (TPI) and 
gelification index (GI), with the warning that his formulas were initially intended for the Per-
mian Gondwana coals (see a critique of maceral indices [63].  

𝑇𝑇𝑃𝑃𝑃𝑃 =
𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 + 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 − 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖

𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 + 𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺 + 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 + 𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺 − 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖
 (3) 

𝐺𝐺𝐺𝐺 =
𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉 + 𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺 + 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖

𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 − 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 + 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 + 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖
 (4) 

The TPI emphasizes tissue preservation versus destruction, whereas the GI measures the 
proportion of qualified with fusinitized macerals. Due to the ratio of vitrinite to inertinite, the 
GI accurately reveals the oxidation state of tissues and indicates the relative water level during 
peat formation [64]. While a low GI suggests a regressive setting, high GI values indicate high 
water levels and a transgressive environment. More terrestrial plants should be added than 
microbial organic matter, as indicated by TPI values above 1 [65]. 

According to previous authors [66-67], the vegetation is derived from detrovitrinite and her-
baceous plants because the TPI values decrease with decreasing tree density. High TPI and 
GI indices represent the moist conditions during peat production, while low TPI and GI indices 
represent the dry conditions. Low levels of aerobic breakdown are indicated by a high (>1) 
TPI and GI combination. However, restricted aerobic decomposition or high levels of anaerobic 
decomposition are the causes of low TPI and high GI indices. When organic matter builds up 
quickly, the oxidation stages are kept to a minimum, which leads to high GI and, generally 
speaking, high TPI. When organic matter builds up quickly, the oxidation stages are kept to a 
minimum, which leads to high GI and, generally speaking, high TPI. 

Figure 15 demonstrates that the high GI and low TPI values of AFZ, BMK, DDG, OGB, WKP, 
and SKJ were laid down in limno-telmatic facies or wet forest swamps with rapid organic 
matter accumulation. Conversely, GMG has a low GI and a high TPI, indicating more terrestrial 
plants were added than microbial organic matter. In essence, underground fungal networks 
are essential for the growth of trees [68].  

These traits point to a weak humification and strong gelification of plant tissues, both 
caused by significant subsidence rates. Bright (vitrain) to banded bright (clarain) coal types 
containing telovitrinite generated from wood and bark are present [69]. The GMG occurs in 
terrestrial facies in a swampy dry forest, and the coal is a wood-derived telo-inertinite, that is 
banded dull (clarodurain) in colour [69]. While most commercial coal deposits are considered 
autochthonous, two main types of peat are frequently distinguished: allochthonous and au-
tochthonous [67]. 
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Fig. 15. Facies diagram to identify paleodepositional peat-forming environments of the studied coals 
(adapted from [62,70]).. 

4.5. Organic matter type and potential for generating hydrocarbons 

The percentage composition of the various maceral kinds in the studied coals is shown in 
Table 1. Except for GMG, which has more inertinites than vitrinites, all other coal samples 
have the highest compositions of vitrinite (Type III), followed by the inertinite group (Type 
IV). As a result, the coals could produce gas at maturity. The maceral makeup of the coals 
tested in this study, except for BMK, shows a preference for vitric coals (Fig. 16).  

 
Fig. 16. Maceral groups in the coals studied, after [71]. 
To distinguish between the aquatic (algal) and terrestrial (land-plant) backgrounds of deposited organic 
matter, the atomic ratio of carbon to nitrogen (C/N ratio) derived from elemental analyses is frequently 
used [72-76]. 
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Although vascular land plants have values above 20, lacustrine algae typically have C/N 
ratios below 10 [77-78]. Higher C/N ratios in river sediments suggest that organic matter from 
land plants predominates. The C/N ratios of the investigated coals show the presence of 
organic matter from terrestrial plants is not oil-prone (Table 2). Although planktonic organisms 
have an N/C ratio > 0.08 for a H/C ratio ranging from 1.3 to 1.5, terrestrial plants typically 
have an N/C ratio below 0.05 for a H/C ratio around 1.0 [79]. The coals in this study exhibited 
N/C ratios between 0.01 and 0.02, indicating a terrestrial origin for the organic matter that, 
when mature, might produce gas products. This results trend agreed with previous study 
conducted on selected coal samples from Benue Trough basin [20]. 

According to Hunt [80], the petroleum potential of particular macerals increases with rising 
hydrogen-to-carbon (H/C) atomic ratios. By performing elemental analysis on kerogens or 
asphaltene, the H/C ratio is commonly determined [81]. The four varieties of kerogen—Type I, 
Type II, Type III, and Type IV—are distinguished by the ratios of H/C and O/C [82-84]. Type 
I is an aliphatic kerogen with initial H/C ratios that are high (>1.5) and low (0.1). Compared 
to Type I, Type II has a lower H/C ratio (roughly 1.0 to 1.4) and a more comprehensive range 
of O/C ratios (0.05-0.15). Due to land-dwelling plants, Type III Kerogen has low H/C ratios 
(0.6–0.9) and O/C ratios, typically between 0.1 and 0.3.  

Despite having comparable O/C ratios > 0, type IV kerogen has the least amount of ali-
phatic-based kerogen and the least H/C (0.6). The organic matter with inertinite-rich macerals 
is found in type IV. The coals' H/C levels indicate the presence of Type III/IV organic materials. 
The Type IV kerogen inertinites comprise around 54% of GMG and are abundant. The coals 
under study are Type II organic matter (BMK), Type III organic matter (DDG, SKJ, OGB, AFZ, 
and WKP), and the boundary between Type III and Type IV organic matter (GMG), according 
to Figure 17. The GMG, WKP, DDG, and OG coals can generate gas when thermally matured 
(Fig. 18). BMK coal is rich in liptinite maceral and could potentially produce crude oils if ther-
mally matured. AFZ and SKJ coals can produce mixed liquid hydrocarbons if subjected to 
sufficient thermal maturation. 

 
Fig. 17. Ternary plot of classification of kerogen type based on major organic components (modified after [85]). 
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Fig. 18. Ternary diagram based on maceral composition indicating the hydrocarbon potential of coals of 
Benue Trough (adapted from [84]). 

 
Fig. 19. Atomic H/C vs. O/C plots of vitrinite maturation line and calculated oil yields for slow pyrolysis 
(adapted from [86]). 

All analysed coal samples are located below the oil generation zone in the plot, according 
to the elemental atomic ratio cross-plot in Figure 19. This finding supports the theory that 
coals can only emit gaseous hydrocarbons when matured. Numerous studies [82,87-90], have 
focused on the crucial importance of liptinites in evaluating the prospects of oil generation 
from coal. The literature reports numerous attempts to determine the lowest level of liptinite 
(exinite in vol.%) found in coal for oil generation [4,88,91]. Hunt [4] and Snowdon [88] both 
reported "15-20% liptinite + resinite," whereas [91] observed "a minimum of 15-20% liptinite." 
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Mukhopadhyay [90] stated that about 20–25% liptinite is needed to produce more than 10% 
pyrolysate. Thus, during the natural coalification process, liptinites and per-hydrous vitrinites 
may produce liquid hydrocarbons [2]. The varied compositions of perhydrous vitrinite are typ-
ically linked to the high liptinite content in humic-based coals [92-94]. Liptinite maceral groups 
in the investigated coal samples can range from 5.2% to 53.2%, indicating low to moderately 
high hydrogen-rich coals with the potential to produce gaseous and oil hydrocarbons. 

A condensed version of Seyler's coal chart for the coals analyzed in this study is shown in 
Figure 20. Usually, the figure shows the relationship between H% and C% (in a dry, mineral-
free base) along with overlaps that show how other thermochemical parameters fluctuate 
depending on the main variables. According to rank, the H% range for the ortho-hydrous 
bituminous coal class is shown as a band with values between 4.4 and 5.6. According to 
Seyler's chart, the hydrogen-rich coals plotted above this band are referred to as per-hydrous, 
while the hydrogen-poor coals plotted below the band are sub-hydrous. In Figure 20, the DDG 
and OGB coals exist in the sub-hydrous zone, while BMK and WKP are outside the parametric 
zones. The AFZ and SKJ coals are plotted in the per-hydrous zone.  

 
Fig. 20. Simplified Seyler chart showing the compositional fields of orthohydrous, perhydrous, and sub-
hydrous coals, after Diessel [69]. 

4.6. Maturity 

Vitrinite reflectance is a measure of the degree of light reflected by vitrinite, which is an 
organic rock component [95-96]. It is a measurement of maturity even if determined by the 
kerogen type [97]. The maturation threshold for coals to produce oil has been assigned as the 
vitrinite reflectance range of 0.5 - 0.6% Ro to 1.30 - 1.35% Ro ([4]). The early oil window 
stage (0.6 - 0.7%), early middle oil window (0.7 - 0.75%), middle oil window stage (0.75 - 
0.9%), early upper oil window stage (0.9-1.0%), and upper oil window stage (1.0 - 1.3%) 
can all be further classified. Except for the early oil window thermal maturity stage (which 
ranges from 0.6 -0.7% Ro) for DDG (0.63% Ro), OGB, and WKP (both at 0.55% and 0.53% 
Ro, respectively), all samples' measured Ro values (i.e., 0.44 - 0.63% Ro) indicate that the 
coals are immature to moderately mature. It is implied that the coals are immature because 
the maturation threshold is for vitric coals. Miles [81] also noted that the atomic ratio of H/C 
indicates a lack of maturity for Type III organic matter at values below 0.9.  

All investigated coals have H/C ratios (0.07 – 0.11) below 0.9, making them thermally 
immature to barely mature. Particularly in predominately anaerobic environments, the depo-
sition of organic matter in sedimentary paleoenvironments results in hydrogen enrichment [98-101]. 
Figure 21 shows the coals plotted beneath Kerogen Type III organic matter, whereas bitumi-
nous coals reflect the catagenetic period during which AFZ was first developed. Since the 
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outlined parameters remain constant despite the effects of diagenetic and in-reservoir altera-
tions, the ratios of transition metals in crude oils are advantageous to the source rocks, deposi-
tional environment, and maturation assessment [9-11]. 

 
Fig. 21. The van Krevelen [102] diagram of O/C versus H/C (from Singh [103]) applied to the coals in the 
Benue Trough. 

5. Conclusions 

To comprehend coal quality and paleoenvironmental deposition, field observation and la-
boratory analytical methods were utilized to examine coal samples from numerous recently 
discovered coal seams in the Benue Trough Basin of Nigeria. The common minerals found in 
coals include kaolinite, quartz, feldspar, hematite, magnetite, calcite, siderite, dolomite, or-
thoclase, graphite, and illite (unknown crystal plane). Coal samples experienced weight loss 
due to moisture loss, volatile matter loss, and fixed carbon combustion. High volatile matter 
yield, average low ash yield, average high fixed carbon, and average low sulphur values indi-
cated an excellent coal grade. Most organic matter is vitrinite, which accounts for an average 
volume percentage of 52.63% (free of minerals). All tested coal samples have varying quan-
tities of inertinite and liptinite. The Obomkpa (BMK) sample had the highest content of liptinite. 
The coal samples were collected in an area of the moor that varied between anoxic and oxic 
environments. Coal samples from DDG and SKJ were placed in planar central mires that fre-
quently flood. 

In contrast, a flat border marsh that had briefly been submerged was where OGB and BMK 
were discovered. In transitional dry mire and transitional-wet mires, respectively, the GMG 
and WKP coals were laid down. In AFZ, BMK, DDG, OGB, WKP, and SKJ, high-GI, and low-TPI 
coals were discovered. These coals were laid down in limno-telmatic facies—moist woodland 
swamps—where organic materials accumulated quickly. Given that GMG has a high TPI and a 
low GI, it may be assumed that terrestrial plants (plant fossils) contribute significantly to the 
development of mire-based processes of decay and degradation of wood (i.e. maceral devel-
opment).  
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