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Abstract 
Coal is a carbon-rich sedimentary rock and fossil fuel that accounts for over 60% of all economically 
recoverable primary sources of energy on earth. The burning of coal emits ~40% of the entire energy-
related atmospheric greenhouse gases, which poses risks to human health, safety, and the environ-
ment. Given this scenario, there are growing concerns about the long term sustainability of the industry 
vis-à-vis its effects on global warming and climate change. However, clean technologies such as 
gasification with carbon dioxide capture could be the panacea to the challenges of coal-fired electricity 
generation. Therefore, this study investigates the hydrogen (H2) and syngas potential of Afuze (AFZ) 
coal earmarked for electricity generation in Nigeria. Consequently, the mathematical simulation, 
sensitivity analysis, and optimization of AFZ were performed under air-steam gasification conditions 
using ASPEN Plus. Results revealed that AFZ gasification from 200°C to 1600°C and the feed rate of 
1000 kg/h yields H2, CO, CO2 and CH4. The optimal conditions for H2 and syngas were observed at 
950°C, ER = 0.31 and SC = 2.0 at the optimal gas compositions of H2 (48 mol.%), CO (11 mol.%), 
CO2 (11 mol.%) and CH4 (0 mol.%). Furthermore, temperature (T), equivalence ratio (ER), steam to 
carbon (SC) ratio greatly influenced AFZ gasification, whereas pressure did not impact the process. In 
conclusion, bench-scale or demonstration gasifier tests are required in future AFZ gasification studies 
to comprehensively investigate its energy recovery and electricity generation potentials. 
Keywords: Sensitivity analysis; Optimization; Hydrogen;Afuze coal; Air-Steam gasification. 

1. Introduction

Coal is the most abundant and dispersed fossil-based fuel on the planet [1-2]. It accounts
for over 60% of all economically recoverable sources of primary energy on earth [3]. Over the 
years, coal has become an integral part of the global energy mix, which accounts for ~38% 
or about 8,000 TWh of the entire electricity generated worldwide [3-4]. The burning of coal for 
electricity generation in power plants is largely based on pulverised coal combustion, which 
causes numerous socio-economic and environmental problems [5-6]. Coal-fired electricity genera-
tion emits ~40% of the entire energy-related greenhouse gases found in the atmosphere [7-8]. 
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Various studies have shown that the process is responsible for land degradation and the pol-
lution or poisoning of water sources [9-10], which endangers human health, safety, and the 
environment.  

The outlined problems have also raised concerns about the long term sustainability of coal-
fired power generation due to its effects on global warming and climate change. Hence, there 
is a growing resistance to coal utilization. Given this scenario, numerous financiers, govern-
ments, and social campaign groups have called for the outright ban, rollback of funding and 
or the cancellation of future coal projects [11-12]. However, the growing demand for cheap 
electricity particularly in countries characterised by energy poverty is expected to increase 
future coal demand. Likewise, the discovery of coal deposits in emerging nations (e.g. Mozam-
bique, Viet Nam, Cambodia and Nigeria) suggest coal could remain a prominent part of the 
global energy mix [13-14].   

The adoption and implementation of cleaner coal technologies have been proposed by scientists 
to mitigate the growing environmental concerns and problems of coal power generation [15-16]. 
Typically, the concept of clean coal advocates for reduced coal consumption, efficient conver-
sion, and mitigation of emissions from coal-fired power plants. Examples of technologies pro-
posed over the years include; near-zero-emissions and highly efficient and low emissions 
(HELE) power plants that utilize carbon capture utilization and storage (CCUS) technologies [17-19]. 
Other examples include; flue gas desulfurization, selective catalytic reduction, and electro-
static precipitators [20-21]. Among the outlined technologies, gasification is considered one of 
the most promising technologies for thermochemical conversion along with the amelioration 
of the harmful effects of coal utilization [22-23]. It is typically considered an environmentally 
friendly technology for the conversion of low value and carbon-based raw materials such as 
coal into high-value synthesis gas (syngas), energy, fuels, and chemicals [24].  

Over the years, numerous gasification related technologies such as underground coal gasifica-
tion [25-26], co-gasification (biomass/coal) [27-28], ultra and supercritical water gasification [29-30], 
and integrated gasification combined cycle (IGCC) [31-32] have been reported in the literature. 
Other studies have examined the potential energy recovery, product gas yield and distribution, 
pollutant emissions, kinetics and optimisation of coal gasification through mathematical mod-
elling software such as ASPEN Plus [33-35]. The findings showed that ASPEN Plus is a practical, 
cost-effective and reliable tool for modelling the product gas, yield, and composition of different 
coal ranks for enhanced energy recovery. Furthermore, ASPEN can be used to simulate the optimal 
operating conditions, engineering economics, and pollutant emissions of coal conversion.  

Therefore, the objective of this study is to model the parametric air steam gasification of 
Afuze (AFZ) coal using ASPEN Plus. The study will also present findings on the product gas 
yield, composition, sensitivity, and optimisation of the AFZ coal acquired from the Owan East 
Local Government Area in the Edo State of Nigeria. The selected operational parameters for 
the mathematical simulation AFZ coal air-steam gasification conditions in ASPEN Plus will be 
coal feed rate, air flow rate, temperature, pressure and steam to carbon (SC) ratio. Previous 
studies have examined the physicochemical, mineralogical, microstructure, thermal and ki-
netic characteristics of AFZ coal [36-38]. However, the findings are limited to the estimated 
reserves, potential energy, and fuel characteristics of AFZ coal. To the best of the authors’ 
knowledge, there is currently no published study on the product yield, gas composition, emis-
sion profiles, sensitivity and optimization analysis of AFZ coal gasification, despite advanced 
plans for its utilization for coal-fired power generation in Nigeria [39]. Hence, it is envisaged 
that the findings of the study will provide comprehensive data on optimal conditions and pol-
lutant emissions for the design and operation of the planned coal plant. 

2. Theory and methods 

2.1. Theory 

The process was modelled and simulated by Gibbs free energy minimisation of the compo-
nents involved in the primary reactions of the gasification process. The reactions consist of 
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water gas shift, steam reforming, and methanation. The governing equations for Gibbs free 
energy for N species (i = 1…N) are stated as follows [40]: 
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The terms ∆𝐺𝐺𝑓𝑓.𝑖𝑖
0  denote the Gibbs free energy of formation of the ith species at the standard 

pressure. The minimisation of the objective function was solved for 𝑛𝑛𝑖𝑖  using Eq. 1. The carbon 
content, determined by ultimate analysis, should be equal to the total carbon content in the 
gas mixture. Therefore, the expression for jth element can be written as;  
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Here the terms 𝑎𝑎𝑖𝑖,𝑗𝑗 describe the number of atoms of the jth element in the ith species and 
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multiplier, the term 𝜆𝜆 methods is given by the relation: 
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Consequently, the extreme points can be obtained by substituting Eq 3into Eq 1; 
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In this study, the major products of steam reforming that were considered include; H2, CO, 
CO2, CH4, C (graphite) and excess steam. The high carbon content of the reacting components 
was thus considered in this study. However, the potential secondary components considered 
include; ethane, ethylene, acetylene, and ethanol, which were previously reported as negligi-
ble in the literature [41]. In practice, the presence of secondary products even at low concen-
trations is considered the precursor of coke. The most common reactions during steam re-
forming of coal include; methanation, water gas shift, and steam reforming reactions as pre-
sented in Eq 5-7 [42]: 
CxHyOz + (x – z)H2O ↔ xCO + (x + y/2 – z)H2 (5) 
CO + H2O ↔ CO2 + H2 (6) 
CO + 3H2 ↔ CH4 + H2O (7) 

Combining Eq 5 and 6 results in the general reaction equation for the steam reforming of 
carbonaceous materials in the literature [42]; 
CxHyOz + (2x – z)H2O ↔ xCO2 + (2x + y/2 – z)H2 (8) 

The overall product gas yield consists of H2, CO, CO2 and CH4, which are calculated from Eq. (8). 

2.2. Process description 

The coal gasification simulation process was developed in ASPEN Plus software. The flow 
sheet of the process that consists of a three-model unit: the RYield (DECOMP), RGibbs (BURN), 
Separator (SEPARATE) and Calculator unit is presented in Figure 1. The RYield block in the 
model was used to convert the proximate, ultimate, and sulphanal properties of the lignite 
coals (presented in Table 1) into potential chemical compounds. On the other hand, the Cal-
culator module employed to normalise the output of the RYield which consists of water (H2O), 
ash, carbon (C), hydrogen (H2), nitrogen (N2), chlorine (Cl2), sulphur (S) and oxygen (O2). 
Likewise, the outlined components serve as the inlet constituents for the RGibbs or gasification 
unit. The unit employed the Gibb free equilibrium analysis to calculate the moles of each 
reactor constituent at the stated operational settings. Apart from the inlet components from 
the RYield, the products in the RGibbs comprise the entire potential gas products of gasifica-
tion. Typically, the products consist of hydrogen (H2), carbon monoxide (CO), carbon dioxide 
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(CO2), methane (CH4) and ethylene (C2H4). Next, the products of the RGibbs unit were sepa-
rated into gases and solid products of the gasification process using the stream separator 
block in ASPEN. 

 
Figure 1. Flow sheet of coal gasification in ASPEN Plus 

Table 1. Proximate, ultimate and sulphanate analysis of AFZ [43] 

Analyses Element Symbol AFZ (wt.%) 

Ultimate 

Carbon C 50.0 
Hydrogen H 4.2 
Nitrogen N 1.1 
Chlorine Cl 0.0 
Sulphur S 1.0 
Oxygen O 12.7 

Proximate 

Moisture M 2.0 
Volatile Matter VM 45.8 
Ash A 31.0 
Fixed Carbon FC 21.2 

Sulphanal 
Pyritic S1 0.45 
Sulfate S2 0.1 
Organic S3 0.45 

3. Results and discussion 

3.1. Effect of temperature on AFZ gas composition 

The gasification profile comprising the gas products composition at various temperatures is 
presented in Figure 2. The simulation was performed at a constant feed rate of 1000 kg/h of 
AFZ coal, Airflow of 15 kmol/h, steam flow of 1500 kg/h and pressure of 1 bar.  

As observed, the content of H2 increased from 0.0 mol-frac at 200°C to 0.52 mol-frac at 
650°C, which was then followed by a decrease to 0.50 mole-frac at 1600°C. Similarly, the CO 
increased from 0.0 to 0.17 mol-frac at 200°C and 1600°C. The other gas composition CO2 and 
CH4 decreased with an increase in temperature from 200°C to 1600°C. The maximum content 
of CO2 and CH4 at 200°C was 0.26 and 0.16 mol-frac, whereas at 1600°C the values were 
0.08 and 0.0 mol-frac, respectively. The optimal conditions were determined when H2+CO 
(syngas) was greater than CO2, which occurred at 950°C, 1 bar, ER = 0.31 and SC = 2.0. 
Consequently, the optimal gas composition (mol.%) for H2, CO, CO2 and CH4 are 48%, 11%, 
11% and 0%, respectively. 
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Figure 2. Profile of AFZ coal gasification gas product 

3.2. Effect of ER and SC on H2 composition 

Figure 3 shows the sensitivity of H2 composition to changes in the equivalence ratio (ER) 
and steam to carbon (SC) ratio for simulation of the AFZ feed at 1000 kh/h, 950°C and 1 bar. 
For ER value ≥ 1.0 combustion occurs whereas for values < 0.2 pyrolysis takes precedence. 
Therefore, the gasification range typically occurs in the range ER = 0.2-0.9. As observed, the 
profiles show that the composition of H2 decreased with increasing ER, whereas the composi-
tion increased with an increasing ratio of SC. However, the entire profiles converged at ER = 
1.03 for all values of S/C where the H2 mol-frac is 0.0. Furthermore, the highest (57%) and 
lowest (34%) composition of H2 within the gasification range occurred at ER = 0.21, and S/C 
values of 6.67 and 0.0, respectively. The optimal value of S/C was observed at 2.0 as deter-
mined by the last significant per cent change in gas composition. The H2 composition at the 
optimal condition was 52 mol.%. 

 
Figure 3. AFZ H2 mole-fraction variation with ER and S/C 

3.3. Effect of temperature and ER on H2 

Figure 4 presents the simulated sensitivity of H2 composition during AFZ gasification under 
the conditions; 1000 kg/h feed rate, Airflow 15 kmol/h, and steam flow rate of 1500 kg/h. For 
the ER range 0.0 to 1.03 considered in this study, the H2 composition started from 0.0 mol-
frac at 200 °C and increased at the same rate from ER = 0.0 – 0.82 but peaked at a different 
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H2 composition (0.21-0.60  mol-frac) with decreasing order in the range from 500°C to 700°C. 
As observed, the composition of H2 is less sensitive to temperature for ER 0.93 and 1.03. 
However, when the ER for simulation reached maximum, the H2 composition was almost flat 
and in some cases slightly reduced. Hence, the highest composition of H2 in mol-frac is 0.60 
at ER = 0.0 and temperature 700°C, where the lowest is 0.0 at 1.03, which are outside the 
gasification range. 

 
Figure 4. AFZ H2 mol-frac variation with temperature and ER 

3.4. Effect of pressure and ER on H2 

Figure 5 shows the sensitivity profile of the H2 composition to gasification pressure. The 
simulation was performed at the conditions AFZ feed rate of 1000 kg/h, Steam flow rate of 
1500 kg/h and temperature of 950°C.  As observed, the composition of H2 was constant for 
the pressures 1 – 25 bar considered but was found to increase with decreasing in ER. The 
profile shows that the production of H2 during AFZ gasification is not sensitive to pressure. 
Therefore, the optimal pressure is 1 bar, which resulted in the maximum H2 composition of 
0.58 mol-frac at ER = 0.0, whereas the lowest (0.0) was at ER = 1.03. 

 
Figure 5. AFZ H2 mole-fraction variation with pressure and ER 
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4. Conclusions 

The study presents results of the successful mathematical simulation, sensitivity analysis 
and parametric optimization of hydrogen (H2) and syngas production from Afuze coal ear-
marked for electric power generation in Nigeria. The mathematical simulation was performed 
using ASPEN Plus software under air-steam gasification conditions using coal feed rate, airflow 
rate, temperature, pressure and steam to carbon ratios as operational parameters. The find-
ings showed that the product gas yield and composition of the AFZ coal consists primarily of 
H2, CO, CO2 and CH4 as determined at the feed rate of 1000 kg/h, airflow 15 kmol/h, steam 
flow 1500 kg/h, atmospheric pressure, and temperatures from 200°C to 1600°C. The sensi-
tivity and optimisation analyses revealed that the optimal conditions for H2 and syngas are; 
950°C, 1 bar, ER = 0.31 and SC = 2.0. Overall, the results showed that the parameters, 
namely; temperature (T), equivalence ratio (ER), steam to carbon (SC) ratio greatly influenced 
the yield and composition of H2 and syngas produced, whereas the profiles showed that the 
air steam gasification of AFZ coal is not sensitive to pressure. In conclusion, the authors rec-
ommend that empirical tests are conducted using bench-scale or demonstration gasifiers to 
examine air steam gasification of AFZ coal for enhanced energy recovery and electric power 
generation through H2 and syngas. 
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