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Abstract 

The integrity of the wellbore plays an important role in petroleum operations. Hole failure problems 

cost the petroleum industry several billions of dollars each year. Prevention of wellbore failure requires 

a strong understanding of the interaction between formation strength, in-situ stresses, and drilling 
practices. 
This paper presents the sensitivity of the reservoir and geomechanical parameters on collapse and 
fracture pressures for oil and gas wells. This study is conducted based on the linear poroelastic model 
and Mogi-Coulomb failure criterion. 
The results indicated that the collapse and fracture pressures increases with increasing the UCS of rock 

and Poisson’s ratio. An increase in horizontal stress anisotropy ratio leads to decrease in the fracture 
pressure. Also, an increasing HSAR coefficient tends to increase collapse pressure. 
Such predictions are necessary for providing technical support for well drilling decision-making and 
predicting the condition at which borehole instability occurs. 
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1. Introduction 

During drilling, there are two types of mechanical borehole failure: compressive and tensile 

failures. Compressive failure occurs when the wellbore pressure is too low compared with the 

rock strength and the induced stresses. On the other hand, tensile failure occurs when the 

wellbore pressure is too high [1]. As in-situ stress and rock strength cannot be easily controlled, 

adjusting the drilling practices is the usual way to inhibit wellbore failure [2-3].  

The main aspect of the wellbore stability analysis is to mitigate these drilling problems [4]. 

In order to avoid borehole failure, drilling engineers should adjust the stress concentration 

properly through altering the applied mud pressure and the orientation of the borehole with 

respect to the in-situ stresses. Since borehole allocation (in terms of orientation) is limited, 

pro-per adjusting of mud weight (borehole pressure) will play an essential role in prevention 

of drilling problems [5-6]. The true mud pressure in the borehole depends on the static weight 

of the mud column increased by the dynamic effect of the flow (known as ECD – Effective Cir-

culating Density), together with occasional fluctuations as the drill string moves (pistoning or 

suction). In view of these fluctuations, the borehole stability conditions are often borderline [7]. 

In engineering practice, a linear poroelasticity stress model in combination with a rock strength 

criterion is commonly used to determine the minimum and maximum mud pressures required 

for ensuring wellbore stability. Therefore, a main aspect of wellbore stability analysis is the 

selection of an appropriate rock strength criterion. So far, the two most commonly used 

strength criteria in wellbore stability analysis are the Mohr–Coulomb criterion and the 

Drucker–Prager criterion [8]. Researchers have found that these two strength criteria can give 

very different minimum mud pressures. Mohr–Coulomb criterion suffers from two major limi-

tations: (a) it ignores the non-linearity of strength behavior, and (b) the effect of intermediate 

principal stress is not considered in its conventional form. Thus, the criterion overestimates 
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the minimum mud pressure due to neglecting the effect of the intermediate principal stress. 

In other hand, the Drucker–Prager criterion underestimates the minimum mud pressure 

because it exaggerates the intermediate principal stress effect [9]. 

Zhou [10] introduced a modified Wiebols and Cook [11] criterion and developed a computer 

program for the wellbore stability analysis. The results indicated the importance of the 

intermediate principal stress on the stability of wellbores. Ewy developed the Modified-Lade 

failure criterion and presented the advantages of this new criterion over Mohr-Coulomb and 

Drucker-Prager [12]. Colmenares and Zoback evaluated seven different rock failure criteria 

based on polyaxial test data, and they concluded that the Modified Lade and the Modified 

Wiebols and Cook fit best with polyaxial test data [13]. Al-Ajmi and Zimmerman [14] developed 

the Mogi–Coulomb failure criterion, according to polyaxial failure data of the variety of rocks. 

They concluded that Mohr–Coulomb failure criterion is conservative in estimating of collapse 

pressure during drilling and using Mogi–Coulomb failure criterion can minimize the 

conservative nature of the mud pressure predictions.  

In this paper, the 3D Mogi-Coulomb strength criterion developed by is used to analyze 

wellbore stability. Furthermore, the analytical models are applied to field data in order to verify 

the applicability of the developed models. This paper presents the effects of the reservoir and 

geomechanical parameters on drilling mud safe window based on linear poroelastic model and 

Mogi-coulomb criterion 

2. Calculation of rock mechanical properties 

The mechanical properties of formations and dynamic elastic constants of subsurface rocks 

can derived from the measurement of elastic wave velocities and density of the rock. Sonic 

logging and waveform analysis provide the means for obtaining continuous measurements of 

compressional and shear velocities. These data, in conjunction with a bulk density 

measurement, permit the in-situ measurement and calculation of the mechanical properties 

of the rock. The elastic moduli relationships, in terms of elastic wave velocities (or transit 

times) and bulk density can be calculated from following equations [15]. 
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where 𝜈𝑑 is the dynamic Poisson’s ratio; Ed is the dynamic Young modulus (psi); αB is Biot’s 

coefficient; Δts is shear wave travel time (ft/s); Δtc is compressional wave travel time (ft/s); 

kB is dynamic bulk modulus (psi); KR is the rock modulus (psi); ρb is the bulk density 

(gr/cm3); ρgr is the grain density (gr/cm3); and “b” is the constant coefficient which is equal 

to 1.34*1010.  

For the Bangestan formation of mentioned oilfield, an equation developed for estimation of 

shear wave travel time by Nabaei et al. [16] was used: 

𝛥𝑡𝑠 = 1.7891𝛥𝑡𝑐 + 7.622                                                                    (6) 

Dynamic data cannot directly be utilized to develop mechanical models. So, they should be 

first converted into static data through some calculation changes made and then used in 

geomechanical model [17]. Poisson’s ratio and static Young’s modulus are both calculated via 

the following relations in south west of Iran. The results show good conformity with laboratorial 

data [18]. 
 𝜈𝑠 = 𝜈𝑑                                                                                                                                       (7)                                    
𝐸𝑠 = 0.4145𝐸𝑑 − 1.0593                                                                                                                 (8) 
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where 𝜈𝑠 is the static Poisson’s ratio and Es is the static Young modulus (psi). 

2.1. In-Situ stresses and pore pressure 

In-situ stress magnitudes play a very important role in geomechanical analysis, and they are 

the most basic parameter inputs in analysis of hydraulic fracturing. Vertical stress is induced 

by the weight of the overlying formations. The vertical stress can be calculated by 

integration of rock densities from the surface to the depth of interest based on Eq. 9. In fact, 

density log can be used to calculate overburden stress [19]. 

𝜎v = 𝑔 ∫ 𝜌(𝑧)
𝑍

0
 𝑑ℎ ≈ �̅�𝑔𝑧                                                                                                  .    (9) 

where σv is vertical stress (psi); z is depth of interest (ft); ρ (z) is the density as a function 
of depth (gr/cm3); g is gravitational acceleration (ft/s2) and �̅� is the mean overburden 

density of rocks (gr/cm3).  

Rocks of Bangestan formation have an average density of 2.6 gr/cm3. By considering hori-

zontal strain and deformation effect, Hooke’s law can be applied to derive the horizontal 

stresses and strains relationships [19]. The following equations are obtained, and are used to 

calculate the minimum and maximum horizontal stresses with tectonic strain effects [20]. 
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where 𝜎ℎ is minimum horizontal stress; 𝜎𝐻 is maximum horizontal stress; Pp is pore pressure; 

𝜀1  and 𝜀2  are strains due to tectonic forces in maximum and minimum directions  and 

considered 1 and 1.5 , respectively. Based on drilling information pore pressure gradient in 

this formation is estimated 0.44 psi/ft.  

3. Stress concentration around a wellbore at production condition 

The stress concentration around a well drilled in an isotropic, elastic medium under aniso-

tropic in-situ stress condition (Maximum and minimum horizontal stresses are different) was 

described by the Kirsch equations. The general expressions for the stresses at the wellbore 

wall for a deviated well in the production situation are [21]: 
σr = Pwf 
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where 𝜎𝑟 is the radial stress; 𝜎𝜃 is the tangential (hoop) stress; 𝜎𝑧 is the axial stress induced 

around a wellbore; Pwf is the bottomhole flowing pressure; θ is measured from the azimuth 
of maximum horizontal stress (Degree) and B is the poroelastic stress coefficient defined as 
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1−2𝜈𝑠
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αB                                                                                                                         (13) 

The shear stresses at the wellbore wall are denoted τrθ , τθz  and τθz , while the in-situ 

stresses in (x, y, z) coordinate system, denoted σ°
x, σ

°
z, σ

°
y, τ

°
xy, τ

°
yz and τ°

xz, and they are 

defined as [21]: 
σ°
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σ°

y = σHsin2𝛼 + σhcos2𝛼  

σ°
z = (σHcos2𝛼 + σhsin2𝛼 )sin2i + σVcos2I             (14) 

τ°
xy = 0.5(σh−σH)sin2𝛼  cosi 

τ°
yz = 0.5(σh−σH)sin2𝛼  sini 

τ°
xz = 0.5(σHcos2𝛼 − σhsin2𝛼 − σV)sin2i                                                                                                                   

where i is wellbore inclination and 𝛼 is the azimuth angle due to the maximum horizontal 

stress (σH) direction (Degree).  
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Fig. 1 shows the stress transformation system in a deviated borehole where 𝛼 is the rotation 

angle around the z′-axis (measured from the x′-axis) and i is the rotation angle around the 

y′-axis (measured from the z′-axis). 

 

Fig. 1. Stress transformation geometry for a deviated borehole [21] 

The tensile failure known as fracturing is expected to happen at the wellbore wall and at 

the point of minimum tangential stress (θ=0o) where the rock is under maximum tension [4]. 

For a vertical borehole, the inclination angle (i) is set to zero and the x-axis is oriented, so 

that it coincides with the major horizontal principal stress axis (i.e., 𝛼 =0°). However, for a 

vertical well the minimum stress values will always be at θ=0o for any values of the in-situ 

stresses and Eqs. 12 become: 
σr = Pwf                  

σθ = 3σ′h − σ′H − Pwf + B(Pwf − Pp)                                (15) 

σz = σv − 2ν(σ′H − σ′h) + B(Pwf − Pp)                                                                                                            

The effect of reservoir pressure decline due to production can be accounted for in the above 

computation by updating the in-situ stresses. For a laterally large reservoir compared to its 

thickness, the change in vertical stress is considered negligible and therefore it is usually kept 

constant [22]. The maximum and minimum horizontal stresses are updated as follows, 

respectively: 

σ′H = σH − BΔ𝑃𝑟                                                                                                                                   (16) 

σ′h = σℎ − 𝐵Δ𝑃𝑟                                                                                                                                   (17) 

where 

Δ𝑃𝑟 = 𝑃𝑟𝑖 − 𝑃𝑟𝑐                                                                                                                                       (18) 

and  σ′H  and  σ′h  are the maximum and minimum horizontal stresses at current production 

condition, respectively. 𝑃𝑟𝑖  and 𝑃𝑟𝑐 are the initial and current reservoir pressures, respectively 

4. Mogi-Coulomb Failure Criterion 

Al-Ajmi and Zimmerman [14] developed the three-dimensional Mogi–Coulomb failure crite-

rion. This failure criterion has been justified by experimental evidence from triaxial tests as 

well as polyaxial tests. According to this criterion 

𝜏𝑜𝑐𝑡 = 𝑎 + 𝑏𝜎′𝑚,2                                                                                                                            (19) 

Where 𝜎′𝑚,2 and  𝜏𝑜𝑐𝑡  are, respectively, the effective mean stress and the octahedral shear 

stress defined by: 

𝜎′𝑚,2 =
𝜎′1+𝜎′3

2
                                                                                                                 (20) 

𝜏𝑜𝑐𝑡 =
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3
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and a and b are material constants which are simply related to cohesive strength ( So) and 

internal friction angle (𝜙𝑓) as follows: 
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𝑎 =
2√2

3
𝑆𝑜𝑐𝑜𝑠𝜙𝑓                                                                                                             (22) 

𝑏 =
2√2

3
𝑠𝑖𝑛𝜙𝑓                                                                                                                                  (23) 

5. Field case study 

The developed analytical models will be applied to a well (called well A) drilled in Ahwaz 

oilfield (One of southern Iranian field in the Middle East) for investigation of stability analysis 

during drilling. This oil field is one of the most important Iranian super giant oil fields, was 

discovered in 1956 and now has more than 450 producing wells. This oil field has an anticline 

structure 72 km long and 6 km wide with NW-SE trending symmetrical anticlinal, located in 

central part of north Dezful region. Its main reservoir is the Asmari formation and Bangestan 

Group with the production rate of 1000,000 barrels/day [23].  

 
Fig. 1. Simplified Stratigraphy of Bangestan Group in 
Persian Basin [26] 

The Bangestan reservoir is one of the 

carbonate reservoirs in southern of Iran, 

providing approximately 5% of the total 

production of the southern oil field 

region. Because of a sufficient amount 

of oil in place and the good quality of 

porosity with low permeability and 

flowing capacity in some of the pro-

duction layers, it is a good candidate for 

a hydraulic fracturing operation [24]. 

This reservoir includes the thick Sarvak 

limestone (300m to 1000m thick) of 

Cenomanian-Turonian age and the 

thinner Illam formation (50m to 200m 

thick) of Santonian age (Fig. 1). These  

two reservoirs form a single reservoir in most of the Dezful Embayment and capped by the 

thick Gurpi/Pabdeh marls [25]. 

5.1. Effects of horizontal stress anisotropy ratio on collapse and fracture pressures  

It is important to have a full knowledge of in-situ stresses before carrying out any rock 

stress analysis. The main reasons for the determination of horizontal in-situ stresses are: (1) 

To get a basic knowledge of formation structure and position of anomalies, groundwater flows 

(2) To find basic data on the formation stress state. (3) To get the orientation and magnitude 

of the major principal stresses. (4) To find the stress effects which may affect drilling and 

production processes [27]. 

Zoback [28] concluded that drilling-induced tensile fractures occur in vertical wells whenever 

there is a significant difference between the two horizontal stresses. So, it can easily be shown 

that the condition for tensile fracture formation in the wellbore wall in a vertical well leads to 

estimation of maximum horizontal stress. Brudy et al. [29] pointed out that the value of 

maximum horizontal stress required to induce drilling-induced tensile fractures (after correc-

ting for excess mud weight and cooling) must be considered as a lower-bound estimate. This 

is because the drilling-induced tensile fractures might have occurred even if there had been 

no excess mud weight or cooling of the wellbore wall. This represents an upper bound value 

of maximum horizontal stress. Figure 2 shows the effects of horizontal stress anisotropy on 

collapse (Pwc) and fracture pressures (Pwf). The horizontal stress anisotropy ratio is defined 

as  

𝐻𝑆𝐴𝑅 =
𝑆𝐻

𝑆ℎ
                                                                                                                     (24) 

As Figure 2 depicts, an increase in HSAR leads to decrease in the fracture pressure. Also, 

it can be seen that increasing HSAR coefficient tends to increase collapse pressure. 
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Fig. 2. Effect of HSAR on the collapse and fracture pressures 

5.2. Effects of uniaxial compressive strength (UCS) on collapse and fracture pressures 

 

Fig. 3. Effect of UCS on the collapse and fracture 
pressures 

Uniaxial compressive strength (UCS) 

of intact rocks is an important and 

pertinent property for characterizing 

rock mass. UCS is included as a main 

input parameter for rock mass 

characterization, rock classification and 

failure criteria [30-31]. This parameter is 
widely used in geological, geotechnical, 

geophysical and petroleum engineering 

projects [32].  

Figure 3 shows the influences of the 

UCS on collapse and fracture pressures. 

It can be concluded that the collapse and 

fracture pressures increase by increa-

sing the UCS. Furthermore, the sensiti-

vity of UCS on the collapse and fracture 

pressures is very low. 

5.3. Effects of Poisson’s ratio on collapse and fracture pressures 

 
Fig. 4. Effect of Poisson’s ratio on the collapse and 
fracture pressure 

During fracturing, a change in 

stresses occurs at the borehole. The 

local stress field is affected in three 

dimensions, which implies a coupling 

between the stresses, taking account of 
the Poisson’s ratio. 

The starting assumption is that there 

exists a principal stress state in the rock 

before the hole is drilled. If the borehole 

pressure is equal to the in-situ stress 

state, the near wellbore stress state is 

still principal [33]. Lowering or increasing 

the mud weight from this stress level 

results in a Poisson’s ratio effect on the 

stresses [27]. 
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Figure 4 displays the effects of the Poisson’s ratio on collapse and fracture pressures. It can 

be concluded that the collapse and fracture pressures increases by increasing the Poisson’s 

ratio. Furthermore, the sensitivity of Poisson’s ratio on the collapse pressure is very low. 

4. Conclusions 

This paper presents the effect of reservoir and geomechanical parameters on collapse and 

fracture pressures. The results indicated that the collapse and fracture pressures increases 

with increasing the UCS of rock and Poisson’s ratio. An increase in HSAR leads to decrease in 

the fracture pressure. Also, an increasing HSAR coefficient tends to increase collapse pressure. 
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