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Abstract 
The paper presents results of studying various transitional modes of a pumping unit at an oil pumping 
station, in particular, speed characteristics of its rotor rotation. Input and output variables of this 
objects are time and angular velocity of the pumping unit rotor rotation, respectively. An ordinary 
differential equation with constant coefficients is used to describe a dependence linking the variables. 
The purpose of the study is to illustrate a possibility of application and technique of applying a 
sensitivity algorithm to the problem. 
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1. Introduction

As it is known, e.g., from [1], various classes of differential equations are often and effec-
tively used in order to describe quantitative relations between variables characterizing behav-
ior of dynamic objects in temporal and spatial domain. Selection of a differential equation class 
in each particular case is determined by existing theoretical understanding of physical, chem-
ical, economic and other processes and mechanisms characteristic of the studied object. De-
termination of numerical values of the parameters of a selected differential equation class is 
usually reduced to a problem of minimizing a quadratic or other metric that characterizes a 
distance between available measured values of the object’s output and a solution of the dif-
ferential equation calculated for the same values of the object’s input as were used to obtain 
the measured output value [2]. Of all the currently known algorithms that may be used to 
obtain numerical values of differential equation parameters, the most efficient and thus, the 
most commonly applied is the so-called sensitivity algorithm [3], which is considered below.  

The object of research in this paper is velocity performance of a pumping unit rotor [4]. At 
that, input and output variables of the object are, respectively, time and angular rotational 
velocity of the pumping unit rotor, while an ordinary differential equation with constant coef-
ficients is used to describe the dependence between the variables [5]. The purpose of the study 
is to illustrate a possibility of application and technique in applying a sensitivity algorithm to 
the problem.  

First, let us assume that the pumping unit rotor rotational velocity ω as a function of time 
t may be described with satisfactory accuracy with a differential equation in the form of   
𝑑𝑑2𝜔𝜔
𝑑𝑑𝑡𝑡2

= 𝑎𝑎1
𝑑𝑑𝜔𝜔
𝑑𝑑𝑡𝑡

+ 𝑎𝑎2𝑤𝑤 + 𝑎𝑎3𝑡𝑡 + 𝑢𝑢(𝑡𝑡), (1) 
where 𝑢𝑢(𝑡𝑡) is a unit function pointing to the moment of the pumping unit start. 

Second, we will assume that we have a certain finite number N of measurement pairs in 
the form of   

𝜔𝜔𝚤𝚤�𝑡𝑡𝑖𝑖 , 𝑖𝑖 = 1,𝑁𝑁�����, (2) 
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where 𝜔𝜔𝑖𝑖 is the value of the pump unit rotational speed at a certain moment of time 𝑡𝑡𝑖𝑖. 
Third, in order to give quantitative assessment of error in description of measurements with 

equations (1), we are going to use Euclidean metric S, determined by an equation  

𝑆𝑆 = ��(𝜔𝜔𝚤𝚤� − 𝜔𝜔(�⃗�𝑎, 𝑡𝑡𝑖𝑖))2
𝑁𝑁

𝑖𝑖=1

�

1
2

, (3) 

where 𝜔𝜔𝚤𝚤� and 𝜔𝜔(�⃗�𝑎, 𝑡𝑡𝑖𝑖) are, correspondingly, measured and calculated values of the motor rotor 
revolution rate. 

As it is directly seen from this equation, the metric S is a function of assessments �⃗�𝑎 of the 
unknown parameters of the equation (1) and thus its application allows reducing the problem 
of finding such assessments to solution of the following extremum problem [6]: 

 (4) 
Here the Formula 2  symbol (minimum argument) means that in this case such assessments 

�⃗�𝑎 are selected for which the metric S takes the minimum value. Selection of exactly such 
assessments �⃗�𝑎 in the conditions stated above appear justified and efficient. 

Fourth, in order to solve the extremum problem (4) let us use a well-known sensitivity 
algorithm based upon application of sensitivity functions Wi(a�⃗ , t)  to assessment of parameters 
𝑎𝑎𝑖𝑖, as defined by equations in the form of 

 
(5) 

It is an iteration algorithm and at each iteration a finite sequence of computational opera-
tions is performed related to forming and solving a system of linear equations with respect to 
assessments a�⃗ . Let us assume that we have already performed 𝑙𝑙 − 1 iterations and have an 
assessment vector a�⃗ l-1. Let us transform a vector of new parameter assessments a�⃗ l in a form 
of �⃗�𝑎𝑙𝑙 = �⃗�𝑎𝑙𝑙−1 + 𝛥𝛥𝑎𝑎�����⃗ 𝑙𝑙 ,                      (6) 
where Δa�����⃗ l is a correction vector for existing assessments a�⃗ l-1.  

Let us take a Taylor series expansion of the unknown function w(a�⃗ l, t)  in the vicinity of a�⃗ l-1 
values and limit ourselves to a linear approximation. As a result, we obtain 
𝑤𝑤(�⃗�𝑎𝑙𝑙 , 𝑡𝑡) ≈ 𝑤𝑤(�⃗�𝑎𝑙𝑙−1, 𝑡𝑡) + 𝜕𝜕𝜔𝜔(𝑎𝑎�⃗ 𝑙𝑙−1,𝑡𝑡)

𝜕𝜕𝑎𝑎1
𝛥𝛥𝑎𝑎1+. . . + 𝜕𝜕𝜔𝜔(𝑎𝑎�⃗ 𝑙𝑙−1,𝑡𝑡)

𝜕𝜕𝑎𝑎4
𝛥𝛥𝑎𝑎4,  𝑖𝑖 = 1,4.         (7) 

Using sensitivity functions,  (3) let us transform this equation to 
𝑤𝑤(�⃗�𝑎𝑙𝑙 , 𝑡𝑡) ≈ 𝑤𝑤(�⃗�𝑎𝑙𝑙−1, 𝑡𝑡𝑖𝑖) + 𝑊𝑊1(�⃗�𝑎𝑙𝑙−1, 𝑡𝑡𝑖𝑖)𝛥𝛥𝑎𝑎1+. . . +𝑊𝑊4(�⃗�𝑎𝑙𝑙−1, 𝑡𝑡𝑖𝑖)𝛥𝛥𝑎𝑎4,  𝑖𝑖 = 1,4.        (8) 

Analysis of this equation shows that: 
1) it is a functional equation which is linear with respect to corrections Δa�����⃗ l for all the values of 

the argument t; 
2) if the function w(a�⃗ l-1, t)  and sensitivity functions  𝑊𝑊𝑖𝑖(�⃗�𝑎𝑙𝑙−1, 𝑡𝑡𝑖𝑖)  are known, it allows constructing 

as many systems of linear equations with respect to corrections Δa�����⃗ l as we wish. 
One of such systems of linear equations may be obtained if we use corrections Δa����⃗ l, serving 

as a solution of the extremum problem  (4). To that end, it is evidently sufficient to: 1) sub-
stitute in (3) the values of 𝜔𝜔(�⃗�𝑎, 𝑡𝑡𝑖𝑖) with the right hand side of the equations (6); 2) differentiate 
the obtained function with respect to corrections 𝒂𝒂𝒊𝒊𝒍𝒍, 𝒊𝒊 = 𝟏𝟏,𝟒𝟒 and make the obtained derivatives 
Formula 4  equal to zero. 

Having performed all the necessary calculations, we get a system of linear equations in the 
form of 

 (9) 
where,  Formula 5 is a 4-dimensional column vector and (4 × 4) is a matrix Formula 6, calcu-
lated with the equations  

 
(10) 

 
(11) 

arg mina S=


( , )( , ) ,   1, 4.a tW a t ii ai

ω∂
= =

∂





l lB a ω∆ = ∆


( )l T l
lW aω∆ = ∆



( )Tl lB W W=
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where Formula 9 – Formula 10 is a matrix, elements Formula 11 of which are defined by the 
following equations: 

 
(12) 

i.e., they are the values of the sensitivity functions Formula 13 at the moment Formula 14. 
As we know the assessments a�⃗ l-1, then, using them to substitute unknown coefficients of 

the differential equation (1) and setting initial conditions we get a well-known Cauchy problem, 
which may be solved by any numerical method applicable to solving differential equations, 
e.g., a Runge-Kutta method. The same method may be used to calculate the sensitivity func-
tions Wi(a�⃗ l-1, ti) , Formula 15 as well, getting all the initial data necessary to form a system of 
linear equations. Having solved this system of linear equations, we get corrections Δa�����⃗ l and 
using the equation, we may then calculate new assessments a�⃗ l. This ends the Formula 16-th 
iteration of solving the problem (3).  

Figure 1 shows a rotational velocity characteristic of the pump unit rotor as a function of 
time and a corresponding assessment obtained with a proposed algorithm; at that coefficients 
in the equation (1) were set equal to  𝑎𝑎1 =  −20.1492 ,  𝑎𝑎2 =  −297.1612 ,  𝑎𝑎3 =  647.2839 ,  𝑎𝑎4 =
1499.2696 

𝜔𝜔 

 
 𝑡𝑡 

 
Fig. 1 Experimental results 

2. Conclusion 

A number of experiments were conducted for various transitional modes of the pumping 
unit; Figure 1 shows one of them, where it is clearly seen that the proposed mathematical 
model and the algorithm for determining its coefficients allow obtaining sufficiently accurate 
assessments of the pumping unit angular velocity. Mean squared deviation of the assessments 
from true values amounted to 0.0038.  Similar accuracy was seen in other experiments [7]. 
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