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Abstract 

To optimize the hydrogen production from sugar cane bagasse gasification in supercritical water, this 
paper illustrates the application of statistical multivariate analysis and prediction through a multi-regression 
model, as well as the optimization of the processing parameters in the complex reaction process. This 
approach is advantageous, especially when experimental evaluation and optimization of a process is 
time consuming and expensive. By carrying out a finite number of experiments, statistical modeling in 

this work shows reasonable good prediction ability in terms of the hydrogen, methane, carbon monoxide 
and carbon dioxide yield. Moreover, not only the synergistic effects between reaction parameters are 

revealed, but also a comprehensive understanding of the whole production process over variation of all 
reaction parameters are allowed. 

Keyword: Design of experiment; Multiple regression model; Supercritical water; Hydrogen production; sugar cane 
bagasse. 
 

1. Introduction  

Production of fuels from renewable resources has gained considerable attention during 

the past few years. Biomass is considered a future energy source because it is renewable, 

abundant, outside of the human food chain, and carbon neutral. Hydrogen from biomass is a 

fairly good source of energy due to high energy density by weight, inexpensive, clean and 

efficient properties of hydrogen [1-8]. 

Meanwhile variety of gasification process of biomass like pyrolysis, thermal gasification, 

and partial oxidation can produce hydrogen from biomass but their disadvantage such as 

intensive cost of dewatering or drying pretreatment steps and production of significant quantities 

of char made these processes less profitable for hydrogen production. However supercritical 

water gasification (SCWG) is a proper gasification method which can solve these problems 

because high-moisture-content biomass can be directly processed in supercritical water without 

additional drying steps [9-11]. In addition, sugarcane bagasse (SB) is among the principal agri-

cultural crops cultivated in tropical countries. The annual world production of sugarcane is 

∼1.6 billion tons, and it generates ∼279 million metric tons (MMT) of biomass residues (bagasse 

and leaves) [12]. SB and sugarcane leaves/trash (SL or ST) contain significant amount of 

cellulose and hemicellulose, which can be de-polymerized through chemical or enzyme cocktails 

into simple sugar monomers (glucose, xylose, arabinose, mannose, galactose, etc.) [13].  

One of the important goal of chemical reaction engineering is to improve performance (res-

ponse), varying the parameters (factors) that affect a chemical process. One factor at time 

method is the process that varies one factor while keep the other factors constant, consequently 

the response will improve with the respect to varied factor. For further improvement of 

response one should adjust the other factors. One factor at time method has some disadvantages. 

First in processes where many factors exist, it can be very challenging to thoroughly adjust 

total factors to arrive near global optimum. Second in this method it is important to assume 

that the interaction of factors would be the same at other setting for the fixed factors and 



finally adjusting a given factor, the former optimal setting of another factor might not remain 

optimal under new conditions. Due to disadvantages of this model a more sufficient and 

scientific method is necessary to asses all the factors. Design of experiment (DOE) is a proper 

statistical method to solve this problem and achieve breakthrough improvements [14-16]. 

Investigation on entire range of each factor is unnecessary time consuming, prohibitively 

expensive and can be impossible in particular experiment manipulating just a fraction of 

experimental point that allow estimation with the maximum statistical confidence is the best 

way to simplify this process.  

Statistical methods have been applied in the field of gasification process for hydrogen 

production, as can be found in quite a few studies [17-21]. The statistical design of experiment 

allows the investigation of the effects of several preparation variables and their synergetic 

effects possible though only a small number of experiments. However, the statistical method 

has not often been used to optimize the performance of a chemical process. Although a few 

studies [17-21] have used the approach of statistical design of experiment to optimize the 

reaction process there is a lot of study which have investigate the effect of parameters that 

affect hydrogen production with traditional method of one factor at time. 

In this work, our intention is to build a statistical model to study hydrogen-enriched gas 

production from SB gasification in supercritical water by using the design of experiment 

method. The laboratory controllable factors are reaction temperature, SB-loading, reaction 

time, and water density. These factors were previously observed to significantly affect the 

hydrogen, methane, carbon monoxide and carbon dioxide yield [21]. However, it was difficult 

to determine from the experimental data how different parameters interact. Here, we propose 

to investigate the different effects of reaction parameters and reveal their interaction with 

emphases on the detailed description of the process of the statistical design and modeling, 

and to use the obtained statistical model to predict hydrogen production from SB gasification 

in supercritical water. 

2. Experimental 

2.1. Materials 

SB was used as a source for biomass material. The biomass particles consumed for the 

experiments were achieved as shavings from Haft-Tappe Manufacturing placed at Haft -Tappe, 

Khuzestan province, Iran. Plants were dried, and all parts were used in the study. Dried biomass 

was ground to a particle size<150 micro meter in diameter. The relevant analytical data for 

SB biomass is given below. The CHNSO elemental analysis results showed that the carbon, 

hydrogen, oxygen, sulfur and nitrogen content of dry biomass were 58.1%; 6.45%; 34.57%, 

0.19% and 0.69%, respectively.  

2.2. Gasification of SB 

The gasification reaction occurred inside a 316 stainless steel batch reactor with an internal 

volume of 6 ml (Fig. 1). Deionized water was loaded into the reactor before the bagasse, so 

its extension for the period of heating would promote mixing. No catalysts were used.  

The amounts of SB and water loaded modified with the reaction environments to be used. 

As an initial point, the desired biomass concentration (gr) was used to determine the mass 

of bagasse that must be loaded into the reactor. The water loadings consumed in these expe-

riments ranged from 6.5mL to 9.5mL, and the bagasse loadings ranged from 0.05 to 0.25 mg. 

Setting the reaction temperature caused to pressurized system.  

Once being loaded, the reactor was sealed. SCWG was subsequently performed by submersing 

the sealed reactor in a preheated, isothermal molten salt bath that contains a mixture of 

potassium nitrate, sodium nitrate and sodium nitrite. The molten salt bath temperature was 

controlled using an electrical heater and a PID temperature controller. Temperature and pressure 

were measured using a K-type thermocouple and a pressure gauge after a given reaction time. 

The heat up time for the reactors is about 5 s. Reactions were performed for times ranging 

from 5 to 30 min. 

After being detached from the molten salt bath, when the desired reaction time had passed, 

the reactors were placed in cool water bath. This step is planned to inhibit the water and other 

liquid products from entering the gas chromatographic column during gas sample collection. 
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Fig. 1 Scheme of the homemade tube batch micro reactor: 1) molten salt bath, 2) batch 

tube reactor, 3) electrical heater, 4) mixer, 5) high pressure gauge, 6) low-pressure gauge, 

7) high-pressure valve, 8) k-type thermocouple, and 9) PID temperature controller. 

2.3. Gas analysis 

To collect gas species formed during SCWG, The metal reactor was then connected to a 

gas sampling valve on a gas chromatograph (GC) equipped with TCD and FID detectors. We 

used helium as the carrier gas. Prior to the analysis of reaction products, the GC was calibrated 

with 10 commercial gas standards containing the components of interest in the range of con-

centrations observed during experiments. 

2.4. Statistical design 

From a previous study of Hydrogen rich gas production via non-catalytic gasification of SB 

in supercritical water media [21], four main factors, i.e., reaction temperature, SB-loading, water 

density, and reaction time, were quantitatively shown to strongly influence the gasification 

of SB in supercritical water in term of H2, CO, CO2 and CH4. These main variables (reaction 

parameters) are all continuous (or quantitative) variables because they can be changed continu-

ously in the laboratory. The inherent continuity of the reaction variables benefits model building 

and allows the resulting model to predict the responses in a coherent manner. The productivity of 

a chemical process may depend not only on the continuous variables but also on such categorical 

(or qualitative) variables as the type of reactors. However, these variables are out of the range of 

our current interest. The factors and their design ranges, as well as the responses of interest 

for this study, are listed in Table 1. Each individual variable is investigated over a wide range 

within laboratory experimental limit. Among the four responses H2 production must be maximized 

however the production of CO, CO2 and CH4 are to be minimized. Between the last three responses 

that are to be minimized, the CO production is the most important for process design. This is 

because the production of hydrogen will increase when carbon monoxide undergoes in water 

gas shift reaction. In order to thoroughly reveal all of the effects and make a linear multiple 

regression model of the target process, all the linear and quadratic terms are used for each 

main effect, and all the two and three-factors interaction are also taken into account to incorporate 

the joint effects of two or three main variables on a dependent variable over and above their 

separate effects. The terms higher than order two are included for preciseness of the model. 

For some terms to be considered there may be no evidence that their effects are significant; 

however, those non-significant terms can be removed using backward elimination (the procedure 

of removing the least significant term from the maximum model successively to improve the 

model), resulting in an effective model comprising only the terms with statistical significant 

effects on the response. In order to build this model with four main variables, a set of experi-

mental points with different factor settings were generated using a custom experimental design 

M. Rashidi, A. Tavasoli, A. Karimi/Petroleum & Coal 57(1) 19-33, 2015 21M. Rashidi, A. Tavasoli, A. Karimi/Petroleum & Coal 57(1) 19-33, 2015 21M. Rashidi, A. Tavasoli, A. Karimi/Petroleum & Coal 57(1) 19-33, 2015 21



with a commercial statistical software package JMP Version 10 (SAS Institute). The designed 

factor settings include a fraction of the combinations of the axial point and the end points of 

each variable, as shown for the X factors in Table 2. During the experiments, there may be 

some minor inconsistencies between the designed values and the actual measured experimental 

values of the variables. However, the correlation and model regression performed based on the 

actual values herein is not influenced by the experimental error (this might be called a “setting” 

error, i.e., it is not the error that results from measurement uncertainty) since the variables 

are all continuous. It is important to confirm that the variables have been subjected to a proper 

normalization by the JMP program in the form of  

𝑥𝑖 − (𝑥max + 𝑥min)/2

(𝑥max − 𝑥min)/2
 

where Xi is the actual variable value and the subscripts max and min stand for the maximum 

and minimum value of the variable range. 

Table1 The process factors and responses 

Process factor Range 

Temperature, X1 (K) 400-520 

SB-loading, X2 (g) 0.05-0.25 
Water density, X3 (ml) 0.18-0.27 
Time, X4 (min) 10-30 
Response Goal 
H2 (Y1) (mmol) Maximize 
CO2 (Y2) (mmol) Minimize 
CO (Y3) (mmol) Minimize 

CH4 (Y4) (mmol) Minimize 

Table2.Custom design of experiment, including the main factors and the responses 

run X1 X2 X3 X4 Y1 Y2 Y3 Y4 

1 400 0.05 0.18 5 0.58 0.83 0.42 0.19 

2 400 0.05 0.18 30 0.62 1.23 0.17 0.4484 

3 400 0.05 0.27 10 0.8 0.97 0.22 0.16 

4 400 0.05 0.27 20 0.95 1.27 0.17 0.274 

5 400 0.10 0.25 5 0.623 0.685 0.236 0.122 

6 400 0.10 0.22 20 0.6977 1.014 0.118 0.232 

7 400 0.20 0.22 30 0.587 0.766 0.1 0.131 

8 400 0.25 0.18 5 0.4 0.614 0.188 0.048 

9 400 0.25 0.18 30 0.428 0.9 0.078 0.112 

10 400 0.25 0.27 5 0.54 1.027 0.129 0.036 

11 400 0.25 0.27 30 0.57 1.52 0.054 0.085 

12 440 0.05 0.22 5 0.766 1.166 0.45 0.224 

13 440 0.10 0.27 30 0.786 1.2 0.102 0.19 

14 440 0.20 0.18 20 0.68 0.98 0.085 0.14 

15 440 0.25 0.25 15 0.51 0.89 0.122 0.11 

16 480 0.05 0.25 20 1.2 1.4 0.06 0.199 

17 480 0.10 0.18 10 0.847 1.1 0.095 0.123 

18 480 0.20 0.27 5 0.57 0.87 0.11 0.056 

19 480 0.25 0.22 30 0.46 0.76 0.098 0.068 

20 520 0.05 0.18 5 0.858 1.54 0.58 0.28 

21 520 0.05 0.18 30 0.91 1.95 0.24 0.778 

22 520 0.05 0.27 5 1.14 1.75 0.398 0.27 

23 520 0.05 0.27 20 1.45 2.1 0.23 0.479 

24 520 0.20 0.22 20 0.9 1.7 0.128 0.42 

25 520 0.25 0.18 5 0.85 0.962 0.26 0.07 

26 520 0.25 0.18 30 0.95 1.26 0.11 0.11 

27 520 0.25 0.27 20 1.05 2.1 0.06 0.475 

28 520 0.25 0.27 30 0.99 2.3 0.0745 0.148 
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2.5. Response collection 

After performing the 28 individual experiments with different factor settings, the yields of 

H2, CO, CO2, and CH4 are collected, respectively, as listed for the Y responses in Table 2. The 

productions of these gases are defined as the amount of mmol gas produced in reactor. 

3. Results and discussion 

3.1. Statistical modeling 

The data set is chosen with an even distribution across multiple variables; in other words, 

the level of the main variables chosen in the statistical design data set covers the whole 

range of possible scenarios in a well-proportioned manner. The broad distribution indicates 

that no factor setting in the experimental design is duplicated. Each of the experimental data 

is, therefore, considered to be significant to the modeling, i.e., each point equally contributes to 

the model on its own.  

Multiple regression models may contain some variables whose t statistics shows non-signi-

ficant p-value, which is the smallest level of significance that would lead to rejection of the 

null hypothesis, i.e., the significance level for testing the hypothesis that a parameter equals 

zero. It is reasonable to consider these variables as the ones that have not displayed statistically 

significant predictive capability when the other variables are present. Removing those variables 

simplifies or improves the regression. One approach for simplifying multiple regression equations 

is the stepwise procedure, including forward inclusion, backward elimination, and stepwise 

regression. In contrast to the forward inclusion or stepwise regression, backward elimination 

starts with all the possible predictor variables (effects) in the model and successively eliminates 

the least significant one based on the value of the t-ratio and/or the p-value. If the smallest 

absolute value of the t-ratio, which is the ratio of the estimate to its standard error, is less 

than a cut off value tout, and/or the largest p-value is greater than a predetermined level such 

as 0.05 or 0.10, the variable associated with this t-ratio and/or p-value is eliminated and the 

model is refitted. Each subsequent step removes the least significant predictor variable until 

an unsatisfactory fit is encountered. As an alternative option to forward inclusion or stepwise 

regression, backward elimination has a distinct advantage, because the former two options 

will possibly miss some predictor variables due to suppressor effects-the predictor variable 

shows significant effect on the dependence only in the presence of other variables. When 

suppression is suspected, forward inclusion and stepwise regression will not be sufficient to 

identify those variables, since they have to be put into the model together in order to significantly 

show their joint predictive capability. 

Fitting the maximum model with the combination of all the predictor variables was first 

performed to correlate the dependent variables (responses). The correlation of H2 yield (Y1 

response) was first carried out, as it is the most important response and is considered as a 

superior measurement of the desirability of the reaction conditions. Initially, the complete 

fourth-order model was built by applying the common method of standard least squares 

using the JMP software. We tentatively assess the general view of how the variables, including 

all the main variables, and their quadratic terms, as well as their cross terms, affect the 

hydrogen yield (model 1). As described in our previous work [21], for example, the H2 profile 

in terms of reaction temperature shows a quadratic (parabola) pattern, with the maximum 

H2 yield shifting from low to high temperature. This phenomenon indicates that under the 

conditions studied in the SB gasification, certain main variables, i.e., temperature might be 

most likely to affect the H2 yield in linear and forth-order manner. Thus, it is reasonable to 

initially include all of the fourth degree terms of the main variables while constructing the 

fourth-order model, and then eliminate the least significant ones. (The back elimination 

regression procedure is demonstrated in detail in Appendix A, for those who are not familiar 

with this statistical method) The restricted model (model 1 in Appendix A) with all the linear 

variables and only the significant nonlinear variables are generated by the back elimination 

procedure. Moreover, further approach to improve the model is performed by considering 

the whole effect, i.e., eliminating all the least significant variables with p-value larger than 

0.1, resulting in a more uniform and reliable model (model 2 in Appendix A). 

Some diagnostic statistics of model 3 are summarized in terms of actual H2 yield (Y1) versus 

predicted H2 yield in Table 3. The predicted model covers a wide range of predictions from 

M. Rashidi, A. Tavasoli, A. Karimi/Petroleum & Coal 57(1) 19-33, 2015 23M. Rashidi, A. Tavasoli, A. Karimi/Petroleum & Coal 57(1) 19-33, 2015 23M. Rashidi, A. Tavasoli, A. Karimi/Petroleum & Coal 57(1) 19-33, 2015 23



0.4 to 1.45 for H2 yield. The size of the random noise, as measured by the root mean square 

error (RMSE), is only 0.0955, which is more than an order of magnitude, smaller than the 

range of predictions. This is strong evidence that the model has good predictive capability. 

The R-square indicates that 94% of the variation in the response can be absorbed by fitting 

the model 

Table3 R-square & RMSE of backward eliminated models 

Response R-square RMSE(root square error) 

Y1 (H2 yield ) 0.936021 0.095493 

Y2 (CO2 yield) 0.957713 0.156775 

Y3 (CO yield) 0.969044 0.035168 

Y4 (CH4  yield) 0.919815 0.111654 

By applying the same backward elimination method to the CO production (Y2), CO2 yield 

(Y3), CH4 yield as used in the regression of H2  yield (Y1), only variables that are significant to 

the dependent variables remain in the model (refer to Table A.3, Table A.4, and Table A.5 of 

Appendix A). The R-square of the regression of Y2,3,4 are 0.96, 0.97, and 0.92, representing 

a model with high quality. The simplified prediction formula derived from model 2 for H2 

yield (Y1), CO yield (Y2), CO2 yield (Y3), CH4 yield (Y4) are listed as follows, where the X, Y 

variables are defined in Table 1. Since the main variables are subjected to a standard scaling 

process, the final form of each variable is in the form of a(Xi − b)/c (where b = (Xmax + Xmin)/2; 

c = (Xmax − Xmin)/2), where “a” represents the coefficient having a physical meaning. 

However, in the prediction formula, only the overall coefficients are shown for simplification. 

Note that some of the main variables, e.g., X2 and X3 in the regression of Y1, which are 

eliminated from the stepwise process, are derived from the interaction terms and/or quadratic 

terms with X variables in their standardized forms. 

Y1=0.7568+0.1835X1-0.129X2+0.0708X3 -0.2033X3-0.0157X1X2+0.0387X4X1-

0.1032X4X3 +0.0145X2X4 +0.0145X2X4 -0.0546X3X4 -1.2633 X4
3+0.0399X1X4X3-

0.0546X1X2X3 -0.0156X4
3 +0.0816X1

4 +0.0736X3
4  -0.1359X4

4 

(1) 

Y2=1.5212+4.26X1+0.416X3+0.416X4+0.7828X2+0.2176X1X3+0.2171X4X3+0.066

4X1X2+0.1211X2X3+0.1887 X4X1+0.3351X4
2-0.443X3

2+0.136X2
2+3.89X1

3-1.24X2
3 -

0.6589X2
3 

(2) 

Y3=4.3066+1.8529X1-0.6561X3+1.9927X2-0.4483X2X3-0.9542X4X2+ 0.7136X4X1 

+1.8882X4
2 -0.7814X3

2-3.0047X2
2-1.4402X2

2 -0.3819X1X4X2-0.5182X2X4X3 -

0.4459X1X2X3 

(3) 

Y4=1.7869+0.4818X1+0.1431X3+0.3289X2+0.8011X1X3+0.079X4X3+0.0326X4X2+

0.045X2X3-0.3846X4X1+0.2912X1
2-0.3351X4

2+0.443X3
2+3.89X1

3 -1.24X4
2 

+0.0807X2
3 -0.0925X2

3+0.0457X1X4X2 +0.0434X2X4X3   + 

0.0807X1X2X3+0.09X1X4X2X3 

(4) 

By using the prediction formulas above, the yield value of the H2, CO, CO2 and CH4 can be 

quantitatively determined at any combination of factor settings in the range shown in Table 1. 

The prediction profiler of H2 yield generated by the JMP software shows that high temperature, 

water density, and low SB-loading favors H2 yield. The predictions further indicate that by 

using a high reaction time, a high yield of H2 is expected to be achieved with high efficiency. 

By the model prediction, similar levels of optimal H2 production could be obtained by either 

high water density which was confirmed by our previous study [21]. 

As opposed to the prediction for H2 yield, CO production is favored by low temperature, 

high SB, and low water density. The desirable setting of temperature, SB loading and water 

density are opposite to the optimal setting for H2 yield, which corroborate water gas shift 

reaction for the gasification of bagasse. Hence, in order to increase the hydrogen production, 

one has to choose the factor settings that are unfavorable to high CO yield.  
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3.2. Evaluation experimental parameters effect on hydrogen yield  

Based on these modeling functions, for a given factor setting, the hydrogen yield response 

can be predicted qualitatively and quantitatively. In order to evaluate the predictability of 

the statistical model 2, direct comparison was performed between the experimental data and 

the predicted values. 

The prediction profiler generated by the JMP software shows that at different setting of 

temperature, water density, reaction time, and SB-loading, the hydrogen yield exhibits a 

maximum in the temperature range studied, and the temperature of the maximum hydrogen 

yield is observed to shift from high to low temperature with increase of the SB-loading. This 

phenomenon was previously observed from experimental results [21]. The comparison of the 

hydrogen yield as a function of temperature between predicted value and the experimental 

results under the same reaction conditions are shown with a contour graph in Fig. 2. The 

hydrogen yield predicted by the model shows a similar density with the experimental results. 

The difference of the absolute value of hydrogen yield is very small therefore this observation 

suggests that the model built with the 28 design factor settings can not only predict the hydro-

gen yield qualitatively but also quantitatively. 

 
 

Fig. 2 Comparison of the actual and model 
predicted hydrogen yield vs. temperature 

Fig. 3 Comparison of the actual and model predicted 
hydrogen yield vs. SB-loading 

The hydrogen yield with different reaction time, water and SB-loading are also compared 

between predicted and actual results. As shown in Fig 3, 4, 5 the density and even the values of 

the predicted hydrogen yield are in good accord with the experimental data. This result further 

demonstrates that our model is reasonably good at predicting the hydrogen yield qualitatively 

and quantitatively. 

  
Fig. 4 Comparison of the actual and model predi-
cted hydrogen yield vs. water density 

Fig. 5: Comparison of the actual and model predi-
cted hydrogen yield vs. Reaction time 
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3.3. Evaluation experimental parameters effect on other gaseous products (CO2, 

CH4, etc.) yield 

CO2 was the second main gas product formed at different operating factors of SCWG of 

SB. The predicted profiler created by JMP software illustrated positive t-Ratio for 

temperature and SB loading which means high temperature and SB loading will increase 

amount of CO2 yield however the t-Ratio of water density in predicted profiler for CO2 yield 

was negative as a result high water density will minimize the amount of CO2 yield.    

Fig. 6 displays the CO2 content and predicted CO2 yield as a function of SB loading, 

temperature, and water density. As shown in Fig. 6 actual CO2 yield and predicted CO2 yield 

have similar area of density therefore the model is properly good for predicting CO2 yield 

quantitatively. 

  
Fig. 6 Comparison of the actual and model predi-
cted CO2 yield vs. temperature, water density, 
SB-loading. 

Fig. 7 Comparison of the actual and model predicted 
CH4 yield vs. temperature, water density, SB-loading. 

It was also observed that the CH4 yield was lower than the other gaseous products in all 

SCWG of SB [21]. The experimental results revealed that CH4 yield increases by increasing 

temperature. High operating temperature (520°C) led to a high amount of methane formation. 

CH4 formation occurs via reaction of H2 and CO through the following reactions: 

Methanation:  CO + 3H2 → CH4 + H2O 

Hydrogenation: CO + 2H2 → CH4 + 1/2O2 

The prediction profiler produced by the JMP software showed that at different setting of 

temperature, water density, and SB-loading, the methane yield exhibits variety response in 

the factors range studied. Hence, in order to increase the hydrogen production, one has to 

choose the factor settings that are unfavorable to high CH4 yield. The comparison of the CH4 

yield as a function of temperature, water density, and SB loading between predicted value 

and the experimental results are shown with a contour graph in Fig 7. As demonstrated in 

Fig. 7 the model is fairly good for predicting CH4 yield quantitatively. 

The other important gas species produced through SCWG of SB was CO. Predicted profiler 

produced by the JMP software introduces temperature (t-Ratio=-8.83) and water density (t-

Ratio=-4.63) as important factor for CO yield. The t-Ratio for these two factors is negative 

which means high temperature and water density can decrease CO yield with water gas shift 

reaction as illustrated in previous work [21]. Hence manipulating water density and temperature is 

extremely important to minimize CO yield with water gas shift reaction. The comparison of 

the CO yield as a function of time, temperature, water density, and SB loading between 

predicted value and the experimental results are shown with a contour graph in Fig. 8. As 

demonstrated in Fig. 8 the model is fairly good for predicting CO yield quantitatively. 
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Fig. 8 Comparison of the actual and model predicted CO yield vs. temperature, water density, SB-

loading and reaction time. 

4. Conclusion 

Quantitative models based on four independent variables that significantly influence the 

hydrogen yield, were developed and improved by a backward elimination method. The results 

of the modeling of hydrogen yield (Y1) demonstrated that temperature, water density, and 

SB-loading are the three most significant factors affecting the hydrogen yield. The relative 

values and the signs of the t-ratio estimate the degree and direction of the effects. The models 

for the methane yield, carbon dioxide and carbon monoxide yield were built in a similar way. 

The predictability of the model was tested by comparison of the experimental results and the 

predicted results using the model. Fairly good agreement was obtained for the hydrogen, 

carbon dioxide, carbon monoxide and methane yield. The outstanding prediction of the model 

based on only 28 experimental runs proves that it is practicable to achieve a statistical model 

through design of experiment approach. By doing this, one can possibly avoid the time-

consuming procedure of data collection, especially when a large number of reaction para-

meters are considered in a chemical process, and scientifically predict the optimal conditions 

and best results. Furthermore, the global understanding of the whole scenario by variation 

of the processing parameters allows the generation of new ideas which may facilitate the 

commercialization process. 

5. Appendix A. Backward elimination of statistically insignificant factors 

The regression results include the estimated coefficient, standard error, t-ratio, and p-

value of each variable of model 1 for hydrogen yield (Y1) as shown in Table A.1. In this 

model, we get a first impression by considering the parameter estimates, their t-ratios and 

p-values. The relative value of the estimated coefficient of each variable estimates the 

average amount of the dependent variable changes when the independent variable changes 

by one unit with all the other variables constant. The sign of the coefficient represents, on 

average, the direction of the change while fixing the other variables, e.g., an increase in 

temperature, reaction time, and water density improves the hydrogen yield, among which 

temperature and reaction time has the most significant effect; while an increase of the SB-

loading decreases the hydrogen yield. 

The standard error is the standard deviation of its sampling distribution. It gives some idea of 

the precision of estimation. Generally, the value of a coefficient or a standard error has little 

practical use; however, it becomes meaningful when it is used to calculate the t-ratio, which 

is the ratio of the estimate to its standard error. The estimated coefficient of any variable 

with a larger t-ratio (positive or negative) thus infers which variables are more relatively and 

statistically significant in the regression. 

In model 1, it was observed that not all the variables are significant to the regression. 

Only the variables of temperature, reaction time, SB loading, water density, temperature× 

temperature× temperature× temperature, time× time× time, temperature × water density 
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× reaction time, temperature× SB loading × water density, SB loading × reaction time and 

water density× water density× water density associate with relatively large t-ratios 

(|t-ratio|>0.5|). A t-ratio is usually small if there is no influence of the corresponding variables. 

Alternatively, this is also reflected in the p-value, e.g., the smaller the p-value is, the more 

convincing the evidence is that the null hypothesis is false, and the more significant the effect 

of the independent variable to the dependent variable is  

Table A.1 The parameter estimates of the regression of Hydrogen production (Y1) for model 1.  

Term Estimate Standard error t-Ratio p-Value 

Intercept 0.750675 0.089223 8.41 0.0011 

X1(400,520) 0.184094 0.197779 0.93 0.4046 

X2(0.05,0.25) -0.11895 0.185074 -0.64 0.5554 

X3(0.18,0.27) 0.156866 0.282251 0.56 0.608 

X4(5,30) 0.218732 0.292538 0.75 0.4962 

X1*X2 -0.01468 0.044007 -0.33 0.7554 

X1*X3 0.000378 0.047495 0.01 0.994 

X1*X4 0.037018 0.054196 0.68 0.5321 

X2*X3 -0.05953 0.041141 -1.45 0.2214 

X2*X4 0.02102 0.056264 0.37 0.7277 

X3*X4 0.037319 0.050308 0.74 0.4994 

X1*X2*X3 -0.05496 0.045317 -1.21 0.2919 

X1*X2*X4 0.004732 0.057258 0.08 0.9381 

X1*X3*X4 0.039067 0.056972 0.69 0.5306 

X2*X3*X4 0.011832 0.059592 0.2 0.8523 

X1*X2*X3*X4 0.007461 0.058101 0.13 0.904 

X1*X1*X1 -0.00399 0.206906 -0.02 0.9855 

X2*X2*X2 -0.01025 0.198287 -0.05 0.9612 

X3*X3*X3 -0.09097 0.286381 -0.32 0.7666 

X4*X4*X4 -0.17087 0.3033 -0.56 0.6033 

X1*X1*X1*X1 0.0793 0.091221 0.87 0.4337 

X2*X2*X2*X2 -0.00065 0.086476 -0.01 0.9943 

X3*X3*X3*X3 0.080379 0.091536 0.88 0.4295 

X4*X4*X4*X4 -0.1369 0.079728 -1.72 0.1611 

In the following backward elimination procedure, we remove the least significant variable 

for the second-order terms, i.e., the one with the largest p-value accompanying small t-ratio, in 

a two-at-a-time manner and refit the model. This process takes five steps (Table A.2), which 

eliminates the variables temperature × water density, temperature × temperature × tempe-

rature, SB loading × SB loading × SB loading, temperature × reaction time × water density× SB 

loading, reaction time × water density × SB loading, temperature ×reaction time × SB loading, 

resulting in an improved model (model 2) with all the main variables and only the significant 

second-order variables. 

Among the main variables in model 2 as shown in Table A.2, the t-ratios of temperature, 

water density, SB loading and reaction time are fairly large, which indicates that these main 

factors are heavily weighted in affecting the hydrogen yield. Generally, as confirmed by previous 

work [21], the increase of both the temperature and water density improves the hydrogen 

yield, in which, temperature appears to have more significant effect; the increase of SB loading 

will decrease the hydrogen yield because of the negative value of t-Ratio also it seems the 

increase of water density will increase hydrogen yield which can be related to water gas shift 

reaction. 
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However, the main variables may not affect the response alone in a linear manner, their 

influence may also be reflected in a quadratic manner, as shown for the large t-ratios of the 

quadratic variables, e.g., temperature × temperature× temperature× temperature, and 

reaction time × reaction time× reaction time× reaction time. Especially for the case of water 

density, which is not as significant as the other main variables in the regression due to the 

relatively large p-value (>0.1) and small t-ratio, but which can affect the response negatively 

and significantly in the form of water density × water density × water density× water density 

In most cases, two main variables might interact with each other at levels that affect the 

response, i.e., the response to one variable varies at different levels of another variable. 

These interaction effects are reflected in the cross terms in model 2 (see column 5 of Table A.2). 

SB loading related interaction terms, e.g., SB loading ×water density× temperature, SB 

loading ×water density, have the most significant effect on the dependent variable, hydrogen 

yield, which indicates that the effect of temperature on this dependent variable is also dependent 

on the value of SB-loading, reaction time, and water density, and vice versa.  

The interaction terms act as moderator variables which moderate the original relationship 

of the main variables. In other words, the effect of one variable on the response will differ at 

different levels of the other variables which interact with the first variable. All the T-ratio of 

the forth-order variables in model 2 are more than |>1.5|, which means they are all 

significant. Among these independent variables, forth order of reaction time has the smallest 

p-value (0.0104), which indicates the most significant variable to the response. 

As an indicator of how well the model fits the data, the value of R-square estimates the 

proportion of the variation in the response around the mean that can be attributed to terms 

in the model rather than to random error [27]. R-square equals one when there is a perfect 

fit (the errors are all zero). Backward elimination of the variables with large p-value step by 

step slightly decreases R-square as shown in table A.2. However, the decrease of R-square 

value does not mean the decline of the goodness of fit, for the reason that R-square tends to 

overestimate the predictability of a model, especially for the case with more than one inde-

pendent variable. The value of R-square usually increases as additional variables are incorporated 

into a regression, even though the new variables have no additional predictive capability. As 

another version of R-square that is adjusted by the degree of freedom in its computation, 

the adjusted R-square is more comparable over models with different numbers of predictors [27], 

and is generally considered to be a more accurate measure than R-square. In Table A.2, 

adjusted R-square is only slightly smaller than R-square, especially after the elimination of 

several insignificant variables, which likely means that no explanatory variables are missing 

for the fit of the model.  

Table A.3. The parameter estimates of the regression of CO2 yield (Y2) for model 2. 

Term Estimate Standard error t-Ratio p-Value 

Intercept 1.0343280615 0.0846991867 12.21 <.0001 

X1(400,520) -0.044103352 0.1886643143 -0.23 0.8199 

X2(0.05,0.25) -0.122449541 0.0354047498 -3.46 0.0061 

X3(0.18,0.27) -0.077171469 0.2557174223 -0.30 0.7690 

X4(5,30) 0.7029958376 0.2492102373 2.82 0.0181 

X1*X2 -0.091478009 0.0415236055 -2.20 0.0522 

X1*X4 0.0691637395 0.0478970416 1.44 0.1793 

X2*X3 0.1531183323 0.0387404376 3.95 0.0027 

X2*X4 0.0974416881 0.0494222807 1.97 0.0769 

X1*X3*X4 0.0661453829 0.0506294341 1.31 0.2206 

X2*X3*X4 0.1264854486 0.0525346547 2.41 0.0368 

X1*X1*X1 0.3584439264 0.1947785792 1.84 0.0956 

X3*X3*X3 0.2168943185 0.2592386125 0.84 0.4223 

X4*X4*X4 -0.556806995 0.2550412632 -2.18 0.0540 

X1*X1*X1*X1 0.1731574959 0.083814952 2.07 0.0657 

X2*X2*X2*X2 0.0649107494 0.0814069863 0.80 0.4438 

X3*X3*X3*X3 0.2243651155 0.0844806439 2.66 0.0241 

X4*X4*X4*X4 -0.195952179 0.0733915513 -2.67 0.0235 
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The back elimination method has also been used for CO2 yield (Y2) CH4 yield (Y3), CO 

yield (Y4), by considering the overall effect without restriction. The parameter estimates are 

shown in Table A.3, Table A.4, and Table A.5. 

Table A.4. The parameter estimates of the regression of CO yield (Y3) for model 2. 

Term Estimate Standard error t-Ratio p-Value 

Intercept 0.0792306861 0.0187479631 4.23 0.0012 

X1(400,520) -0.185757721 0.0423619518 -4.39 0.0009 

X2(0.05,0.25) -0.02711135 0.0367969483 -0.74 0.4754 

X3(0.18,0.27) -0.099154315 0.0589200996 -1.68 0.1182 

X4(5,30) -0.083425498 0.0087570339 -9.53 <.0001 

X1*X4 -0.014732722 0.0096404408 -1.53 0.1524 

X2*X4 0.0229618715 0.0102914601 2.23 0.0455 

X3*X4 0.017285338 0.0099729069 1.73 0.1086 

X2*X3*X4 -0.018562893 0.0109827226 -1.69 0.1168 

X1*X1*X1 0.2207496688 0.0434962624 5.08 0.0003 

X2*X2*X2 -0.053006191 0.0389263123 -1.36 0.1983 

X3*X3*X3 0.0766793654 0.0595308438 1.29 0.2220 

X1*X1*X1*X1 0.046393059 0.0172680232 2.69 0.0198 

X2*X2*X2*X2 0.0689993978 0.0181848608 3.79 0.0026 

X3*X3*X3*X3 -0.048670909 0.0178723769 -2.72 0.0185 

X4*X4*X4*X4 0.0863242423 0.0161386802 5.35 0.0002 

Table A.5.The parameter estimates of the regression of CH4 yield (Y4) for model 2. 

Term Estimate Standard error t-Ratio p-Value 

Intercept 0.7698205072 0.0547894663 14.05 <.0001 

X1(400,520) 0.1636639187 0.1347425218 1.21 0.2499 

X2(0.05,0.25) -0.125567898 0.025106766 -5.00 0.0004 

X3(0.18,0.27) 0.1500410767 0.176102168 0.85 0.4124 

X4(5,30) 0.0451761265 0.0273989476 1.65 0.1274 

X1*X3 0.0130262914 0.0279316934 0.47 0.6501 

X2*X3 -0.057353375 0.027596878 -2.08 0.0619 

X2*X4 -0.004327255 0.0301769153 -0.14 0.8886 

X3*X4 0.0371489708 0.0301698934 1.23 0.2439 

X1*X2*X3 -0.042915876 0.02883721 -1.49 0.1648 

X1*X2*X4 0.0063863181 0.0329354032 0.19 0.8498 

X1*X3*X4 0.0161114336 0.0325279281 0.50 0.6301 

X1*X1*X1 0.0300397041 0.1380863694 0.22 0.8318 

X3*X3*X3 -0.077653176 0.1787918015 -0.43 0.6725 

X1*X1*X1*X1 0.1149504324 0.0524925886 2.19 0.0510 

X2*X2*X2*X2 0.0248030601 0.0552303115 0.45 0.6621 

X4*X4*X4*X4 -0.130657229 0.0516879666 -2.53 0.0281 
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