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Abstract

Investigation on the properties of fluid catalytic cracking (FCC) slurry oil (SLO) at different conversion
levels and the impact of FCC SLO processing on H-Qil vacuum residue hydrocracking performance and
on the subsequent performance of the FCC unit was carried out in this paper. Analysis of FCC SLO
samples taken at different FCC conversion levels did not show any effect of conversion on the FCC SLO
properties in the FCC conversion range 72.47-82.4%. The addition of FCC SLO to the H-Oil feed
reduced sediment level in the atmospheric tower bottom (ATB) product, which is in line with other
research reports. The distribution of FCC SLO among the H-Oil products was following: 15% in vacuum
tower bottom (VTB) product; 60% in vacuum gas oil (VGO) product), and 25% in diesel product. The
increase of the amount FCC SLO in H-Oil feed decreases the FCC conversion, and the yields of the
higher value products: Cscut, C4cut, and gasoline, and increases the yields of the lower value products:
heavy cycle oil (HCO) , and SLO. An optimized balance between H-Oil VR hydrocracker and VGO FCC
unit performance related to the optimum amount of FCC SLO processed in the H-Oil could improve the
performance of the whole refinery.

Keywords: Fluid catalytic cracking,; Ebullated bed vacuum residue hydrocracking slurry oil; Conversion; Sediments.

1. Introduction

The fluid catalytic cracking (FCC) slurry oil (some call this product as FCC decant oil, clari-
fied oil, FCC bottoms or heavy cycle oil) is the heaviest product obtained during catalytic
cracking of heavy atmospheric gas oil, vacuum gas oil, and sometimes atmospheric resid [*],
Due to its overwhelmingly aromatic nature this complex mixture cannot be used as automotive
fuels [2-31, Generally, it is mixed into heavy fuel oil as a viscosity cutter [41, The FCC slurry oil
(SLO) is a low molecular weight product with high aromaticity and short side chain [51. The
reported values for the density at 15°C of the FCC SLO, which is an indicator for the aroma-
ticity [6-71 vary between 0.9594 [31 to 1.126 g/cm?3 [1], The reported values for the aromatics
content of the FCC SLO vary between 54.1 [3]1 to 99.2% [2], It was found that the FCC slurry
hydrogen content strongly correlates with the aromatics content determined by ASTM D-2549
(Fig.1 a) and it can vary between 6.9 and 11.7% [2]. The FCC SLO molecular weight was found
to correlate with the number of carbon atoms in alkyl side chains (Fig. 1 c) [71 and with the
aromatics content (Fig.1 d) [2]. This suggests that with the evolution of the catalytic cracking
of the heavy oil (increase of conversion) the FCC SLO becomes a lower molecular weight heavy
oil fraction due to the scission of the side alkyl chains attached to the aromatic cores, which
become shorter, and due to the cracking of the alkanes, which disappear from the FCC SLO
contents. One may conclude that density, or hydrogen content of the FCC SLO are sufficient
indicators for its aromatics content and the degree of aromatic condensation and they are
interrelated with each other as deduced from Figures 1 and 2 71, The higher aromaticity of
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the FCC SLO [81 makes this material desirable for the addition to the vacuum residue hy-
drocracking because it has a positive effect (decreasing) on the sediment formation in the
hydrocracker [9-131,
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Figure 1 Relations of FCC SLO hydrogen content to aromatics content and the average number of aro-
matic rings per molecule, and relations of FCC SLO molecular weight to the FCC SLO aromatics content
and the number of carbon atoms in alkyl side chains (Data extracted from refs 2 and 7)
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Figure 2 Figure 1 Relations of FCC SLO hydrogen content to aromatics carbon fraction (a), to aromatic
condensation degree (b), to density (d), and a relation of FCC SLO density to saturate content (Data
extracted from refs 2 and 7)
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However, the FCC SLO, despite its high aromatics content, is not always suitable for hy-
droprocessing, especially when it is blended with materials like high high saturate content
virgin gas oils in a great amounts [*4], In such a case a plugging of the catalyst bed in a fixed-
bed hydrotreater was reported [14l, Another example showing that the addition of the FCC
SLO can destroy the colloidal stability and increase the particle size of aggregated asphaltenes
is the addition of FCC SLO to Tahe atmospheric residue as reported in [*5], It was found in
that study that the decline of the colloidal stability of Tahe atmospheric residue was attributed
to the component polarity difference between oil fractions and the atmospheric residue. The
polarity of aromatics and resins of FCC slurry oil was lower than that of Tahe atmospheric
residue, which was found to be the reason for the deteriorated colloidal stability. The addition
of FCC decant oil (SLO) to a heavy crude oil in amount 10% was reported by Tirado and
Ancheyta to increase the sediment level during hydroprocessing, while the lower molecular
weight FCC gas oils LCO and HCO decreased the sediment content [16], They concluded that
both the high concentration of aromatic compounds and their structure are the factors respon-
sible for the decrease in sediment formation. The FCC decant oil used by Tirado and Ancheyta
was heavier than that reported by other researchers having higher amount of complex mole-
cules like poly-aromatics, which may explain the increased tendency of the FCC decant oil to
form sediments [16],

One of the option to convert the lower value FCC SLO to higher value products is to recycle
and process it with a fresh FCC feed [171, Unfortunately due to the large amount of poly-nuclear
aromatics (PNA) in the FCC SLO it is difficult to convert, and the FCC SLO PNA tend to undergo
condensation coking reactions during the catalytic conversion [17-201 It was found that during
catalytic cracking of PNAs very little cracking of the 2-ring PNA over the FCC catalyst occurred,
while in contrast the 3-ring PNA was highly reactive, and was rapidly converted into monocyclic
aromatic hydrocarbons, 2-ring PNAs and coke. As a whole the higher propensity to form coke
of the FCC SLO limits its processing in the commercial FCC unit because the regenerator tem-
peratures may go beyond the metallurgical limit of the regenerator vessel. A selective hydro-
genation of the FCC SLO could increase its conversion from 39.7 to 63.5 wt.% [2!1, It was
shown that tetralin-type naphthenoaromatics were the desired hydrogenation products, which
provide a low selectivity of coke and heavy oil [21], The selective hydrogenation of FCC SLO
was also shown to increase its hydrogen-donating ability and thereby becoming an optimal
hydrogen donor solvent for asphaltenes conversion during hydroconversion experiments [22],
The naphthenebenzenes obtained by hydrogenation of the PNA was found to have the maximal
HAD and they were the component for hydrogen donating performance of Hy-HCO for asphal-
tenes hydroconversion [22]1,

There are applications for the FCC SLO which includes the use of FCC SLO as a blendstock
for production of road asphalts [23-251, Others involve hydrotreatment of FCC SLO [26-271 and
subsequent carbonization to produce high needle coke [28], The FCC SLO has been also studied
as a feedstock for coke production [29-301 and for production of special products [31-34],

Marques et al. concluded that at HCO (SLO) contents lower than 15 vol %, in the vacuum
residue hydrocracking feed, the HCO does not impact the 540°C+ conversion level or the
hydrotreating performances of the residue-upgrading process [°1. Their work illustrated that
the aromatic species of the HCO played an important role in the stabilization mechanisms but
that the HCO does not participate in the hydroconversion reactions [°],

The aim of current work is to study what kind of transformations occur during processing
FCC SLO in the H-Oil ebullated bed vacuum residue hydrocracking when the FCC SLO content
in the H-Oil feed varies between 4 and 12%. How the processing of FCC SLO impacts the
quality of H-Qil gas oils products (HAGO, LVGO, HVGO) and what is the effect of this on FCC
conversion.

2. Experimental

All hydrocracking experiments were carried out at the LNB EBVR H-Oil hydrocracker. A
simplified process diagram of the LNB EBR H-Qil hydrocracker is presented in [*2]l, Details
about the LUKOIL Neftohim Burgas H-Oil residue hydrocracker are given in [12],
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The vacuum residue 540°C+ conversion was estimated by the equation:
EBRHCFeed,,;.. — EBRHC Product, ;. <100

EBRHCFeed,,yc. eq. (1)

where: EBRHCFeeds40oc+ = mass flow rate of the EBVRHC feed fraction boiling above 540°C,
determined by high temperature simulated distillation, method ASTM D 7169 of the feed and
multiplied by the mass flow rate of the feed; EBRHCProductssoec+ = mass flow rate of the
EBVRHC product fraction boiling above 540°C, determined by high temperature simulated
distillation, method ASTM D 7169 of the liquid product multiplied by the flow rate of the liquid
product.

The operating conditions (reaction temperature, and reaction time) in the LNB EBVR H-OQil
hydrocracker were varied in such a way to obtained a conversion that varied in the range 55-78%.

All cracking experiments have been performed at the LNB FCCU. Details about the LNB
FCCU are presented in [35], The FCC conversion was defined as 100-LCO-HCO-Slurry, %. The
FCC LCO is a product with cut points of 210 and 300°C; FCC HCO is a product with cut points
of 300 and 360°C; the FCC slurry is a product with cut point 360°C+. A correction of conver-
sion to gasoline T90%=175°C was employed to account for the variation in the fractionation
between gasoline and LCO FCC products.

Conversion (%)=

3. Results and discussion
3.1. H-Oil operation severity impact on yields and quality of FCC gas oils

In our previous studies [36-371 we have shown that the H-Oil weight average bed tempera-
ture (WABT) has a direct impact on the conversion in the FCCU. The increase of H-Oil WABT
leads to a decrease of FCCU conversion 371, In Figure 3 a relation of H-Oil WABT to the yields
of FCC gas oils is presented.
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Figure 3. Relation of H-Oil WABT to the yields of FCC gas oils (a), and relation of FCC feed conversion to
the yields of FCC gas oils (b)

In Figure 3 b a relation of FCC feed conversion to the yields of FCC gas oils is depicted. This
data clearly shows that the increase of H-Oil WABT decreases LCO yield and increases the
yields of HCO, and SLO. The data in Figure 3 b indicate that the increase of conversion im-
proves the yield of LCO. Our earlier study showed that the cracking of higher reactivity feeds
leads to production of higher amount of LCO. Figure 4 indicates data for catalytic cracking,
performed in an ACE laboratory FCC unit, of two feeds, which have different reactivity, as
discussed in our recent study [38]1, and shown in Figure 4 a. The data in Figure 4 b exhibited
that from the more reactive feed, which gives a higher conversion at the same reaction se-
verity (the same CTO in that case), a higher yield LCO is obtained at the expense of the higher
yield of SLO. Therefore, one may conclude that the increase of H-Oil WABT, not only decreases
FCC conversion in the LNB FCC unit, but also decreases the yield of LCO at the expense of
increasing the yields of HCO and SLO.
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Figure 4. Dependence of FCC conversion on catalyst-to-oil ratio for two different feeds (a); FCC LCO
yield as a function of the conversion for two different feeds

Table 1 presents data for the distillation characteristics, density, and viscosity of the LNB
FCC gas oils (LCO, HCO, and SLO). Table 1 also includes data for FCC SLO molecular weight,
estimated by Goosens’ correlation [39]1, and hydrogen and aromatic carbon content, estimated
by Conoco Philips method [4°], Table 1 also includes data for hydrogen content, measured by
ASTM D 5291 [41]1 and for the heat of combustion for one SLO sample.

The relations of the distillation characteristics to density, and viscosity of the studied FCC
gas oils have been examined by correlation matrix for these three FCC gas oils. These corre-
lation matrices are presented in Table 2.

Table 2. Correlation matrices of properties of FCC gas oils under study

LCO d15 75 T10 750 790 795 VIS at 40

FCC LCO d15 1

T5 0.91 1.00

T10 0.42 0.94 1.00

T50 0.84 0.78 0.59 1.00

T90 0.58 0.46 -0.04 0.72 1.00

T95 0.62 0.44 0.57 0.87 1.00 1.00

VIS at 40 0.82 0.58 0.62 0.90 0.92 0.90 1.00
HCO di5 75 T10 750 790 795 VIS at 40

FCC HCO d15 1

T5 -0.11 1.00

T10 0.69 0.90 1.00

T50 0.69 0.76 0.94 1.00

T90 0.51 0.36 0.48 0.73 1.00

T95 0.85 0.24 0.52 0.78 0.99 1.00

VIS at 40 0.64 0.66 0.84 0.96 0.91 0.85 1.00
SLO di5 75 T10 750 790 795 VIS at 80

FCC SLO d15 1.00

T5 0.15 1.00

T10 0.34 0.87 1.00

T50 0.56 0.09 0.41 1.00

T90 0.64 -0.05 -0.18 0.08 1.00

T95 0.77 -0.17 -0.17 0.26 0.93 1.00

VIS at 80 0.99 0.36 0.34 0.71 0.76 0.66 1.00
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It is evident from the data in Table 2 that the density of LCO most strongly correlates with
the Tso of the distillation characteristics. This suggests that that the density of the LCO de-
pends mainly on the fractionation between the cracked gasoline and the LCO from the LNB
FCCU. Viscosity of the LCO most strongly correlates with Tooe of the distillation characteristics.
Therefore, the viscosity of the FCC LCO is governed by the heavy part of this material. The
data in Table 2 indicates that the FCC HCO density is governed by the heavier part of this FCC
gas oil (R=0.85 for FCC HCO dis with Tos% =0.85). The viscosity of FCC HCO most strongly
correlates with Tso% (R=0.96). The data in Table 2 shows that the FCC SLO density most
strongly correlates with viscosity (R=0.99) and a weaker correlation of the SLO dis with Tose%
(R=0.77) is registered. The data for the FCC SLO molecular weight presented in Table 1 shows
that it varies in a narrow range, between 250 and 263 g/mol. It is much lower than the
molecular weight of the LNB FCC VGO feed, which has 100 g/mol (MW=363 g/mol) higher
molecular weight than the FCC SLO. This indicates that the catalytic cracking of the VGO
breaks the side alkyl chains attached to the aromatic cores. This results in a lower molecular
weight VGO boiling range product (that is FCC SLO) with much higher aromaticity, density,
and viscosity. The data in Table 1 also indicate that the FCC SLO hydrogen content of the
studied samples varied between 6.9 and 8.4. These values were obtained by the use of the
Conoco Phillips correlation 401 and they well fit to the measured hydrogen content by the
ASTM D 5291 of the FCC SLO sample from 26.6.2017. Therefore, we may consider these
values as correct. If we use the correlation established from the NMR data for FCC SLO [2] and
shown in Figure 1la we can find the LNB FCC SLO has a content of aromatic compounds ac-
cording to ASTM D-2549 [42] of about 93%. The hydrogen content of about 8% corresponds
to aromatic carbon fraction of about 0.7 as illustrated in Figure 2a. An average number of
aromatic rings per molecule of about 3.7 is obtained for hydrogen content in the FCC SLO of
about 8%, as shown from the data in Figure 1 b. For the molecular weight of the FCC SLO of
about 257 the aromatic content according to the data in Figure 1 d corresponds to about 97%.
In other words, the aromatics content in the FCC SLO produced at the LNB FCCU is higher
than 90% and lies in the range between 92 and 97%. The data in Table 1 does not show any
relation of the quality of the FCC SLO to the FCC reaction temperature in the studied range
between 530 and 540°C. Neither a relation exists between the SLO and the FCC conversion in
the studied range between 73.9 and 82.4%.

3.2. Effect of processing of FCC SLO in H-Oil on sedimentation, product yield struc-
ture and quality of the H-0il gas oils (HAGO, LVGO, HVGO)

Marques et al. showed that the stability of the hydrocracked residual oils is being ruled by
the maltene aromaticity, more specifically by the tetra- and penta-aromatics in the 350-540°C
cut [91, In their study the addition of the FCC SLO to the VR hydrocracking feed did not alter
the nature of the hydrocracked asphaltenes but the composition of the product 350-540°C
(VGO) cut varied significantly, leading to strongly varying sediment levels in the effluents [°],

Figure 3 demonstrates how the addition of about 8% of the total feed for the LNB H-Oil VR.
The data in Figure 3 indicates that after addition of about 8% to the H-Oil feed the sediment
content in the ATB product dropped from 0.4 down to 0.15%. at the same time the H-Oil
WABT was increased from 423 up to 427°C. The decreased sediment content in the H-QOil ATB
product, a result from insertion of 8% FCC SLO in the H-Oil feed is in line with the reports by
other researchers [9-11],

Zajdlik, and Bahidsky [43] reported that during processing of FCC SLO in the ebullated bed
vacuum residue hydrocracking (LC-Fining) 80% of the FCC SLO ended up in the LC-Finer VGO
product, and 20% remained in the VTB product. In order to understand the transformations
which occur with FCC SLO during its processing in the LNB H-Oil hydrocracker a dedicated
commercial test with and without processing of FCC SLO was performed. The test was per-
formed at throughput of 245 t/h and WABT of 423°C for the case without FCC SLO processing
and WABT of 425.5°C for the test with processing of 20 t/h FCC SLO.
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Figure 3 Effect of the addition of FCC SLO to the ATB sediment content (TSE) and H-Oil WABT before
and after addition of FCC SLO in the H-Qil feed

Table 3 summarizes the results from this test. In order to compare the yields for both cases
at the same WABT of 425.5°C the conversion at 423°C was transformed in conversion at
425.5°C using the data for the activation energy of Ea = 220.8 kJ/mole, and pre-exponential
factor of ko=2.219*10'®, determined in our recent study 441, The yields from 100% VRO at
WABT of 425.5°C were obtained by the use of the product selectivities estimated from the
data for the case of WABT = 423°C and the estimated conversion at 425.5°C, as described
earlier. The final result shows that the distribution of the FCC SLO among the H-Oil products
is 24% going to diesel; 61% going to VGO; and 15% going to VTB. By employing eq.1 to

estimate density of petroleum products blends:

. 100
Blend density = 5 eq.(2
Y PmducrlA)+Product2%/density2 q ( )

density1
where: Blend density = density of the diesel, and VGO of these products obtained from hy-
drocracking of the feed VRO (92%) blended with FCC SLO (8%), g/cm? at 15°C; Product 1
% - FCC SLO content in the H-Oil diesel, and H-Oil VGO 5.8% and 15.5% respectively;

The data for densities 1 and 2 for eq.1 are given in Table 3 (the last two rows).

Using eq. 2 and the densities mentioned above the density of the material coming from the
FCC SLO in the H-Oil diesel was found to be 0.943 g/cm3. Comparing this value with the value
for the density of the FCC HCO (Table 1) that is about 1.00 g/cm?3 some extent of hydrogena-
tion of this material may be suggested. The density of the material coming from the FCC SLO
in the H-Oil VGO was found to be 1.023 g/cm3. Comparing this value with the value for the
density of the FCC SLO (Table 1) that is about 1.09 g/cm?3 some extent of hydrogenation of
this material may be suggested again. Our data are in line with those reported by Marques et
al. I°1 showing no hydroconversion of the FCC SLO (no increase in the yields of gas and naph-
tha, and the increase of the diesel yield is equivalent to the content of the fraction boiling
below 360°C in the FCC SLO (about 24% see Table 1)). However, the reduction of the densities
of the material from the FCC SLO in the H-Oil diesel and VGO of about 60-70 kg/m?3 suggests
that some hydrogenation of the FCC SLO takes place at the conditions of the ebullated bed VR
HC studied in this work. The increase of the content of FCC SLO in the H-Qil feed has an effect
of proportional increasing of density of the three H-Qil gas oil products as illustrated in Figure 4.
More data about the properties of H-Oil gas oils (HAGO, LVGO, HVGO) obtained during hy-
drocracking VRO feeds which contain different amount of FCC SLO are presented in Table 4.
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0,97
HVGO = 0.002x + 0.9415 n
R’z 0.8152

LVGO =0.0027x+0.9289H4AGO = 0.0021x+0.916
R*=0.8627 R?=0.8782

Density at 15°C of H-Oil HAGO, LVGO, HVGO,

0 2 4 6 8 10 12 14
FCC slurry content in H-Oil Feed, wt.%

®HAGO D15 aALVGO D15 MHVGODI1S

Figure 4 Relation of the content of FCC SLO in the LNB H-Qil VR feed to the density of the H-Oil gas
oils (HAGO, LVGO, HVGO)

One may conclude that the FCC SLO increases the yield of H-Qil diesel since it contains
about one fourth of diesel material, and increases the yield of H-Oil VGO since the FCC SLO is
in fact VGO. Some small amount of it ends up in the VTB, which depends on the fractionation
efficiency of the H-Oil vacuum tower. Figure 5 presents graphs of selectivity curves for the
vacuum residue hydrocracking products obtained in a laboratory hydrocracking unit, as de-
scribed in 5], and in the commercial LNB H-Oil VR hydrocracker. The VRHC product yields
distribution, as shown in Figure 5 a [45] can be described as that explained in the work of
Wallenstein and Alkemade [46]1 as primary unstable product (VGO), primary plus secondary
stable (gas, naphtha, kerosene, diesel).

48 @ Vac. Gas Oil Gas Oil X Gas Kerosene @ Naphtha 40

a4
40
© 36
w32
>
w28
L2

50 52 54 56 58 60 62 64 66 68 70 72 74 76 78 80

Vacuum residue

Diesel # Naphtha

@ VGO - total X Gas - total
0 100 20 30 40 50 60 70 80 90 100

Conversion (%)

X Vacuum residue X FCC DO in H-Oil Feed, wt.%
O VGO+FCC DO A Diesel + FCCSLO

a b

Figure 5. Selectivity curves of the vacuum residue hydrocracking obtained in a laboratory hydrocrack-
ing unit (a) (1-L semibatch magnetically stirred autoclave., as described in [48], and in the commercial
LNB H-0Oil VR hydrocracker (b) (313 t/h capacity)

Figure 5 b exhibits this product yields distribution, as obtained at the LNB H-Qil VR hy-
drocracker. The VGO yield, as mentioned above is a primary unstable product. With the in-
crease of conversion initially the VGO yield increases, then it reaches its maximum, that is at
a conversion level of about 66%, and beyond that conversion the VGO yield starts to decrease.
The yields of gas, naphtha, and diesel, which are primary plus secondary stable products,
always increase with augmentation of conversion. The unconverted vacuum residue (H-Oil
vacuum tower bottom = VTB) always decreases with enhancement of conversion. There is a
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big scattering in the yields of VGO, and diesel, which can be explained with the different
efficiency of the separation between the diesel and the VGO (HAGO, LVGO, and HVGO) prod-
uct. Regardless of the data scattering for these yields (VGO and diesel) their selectivity curves
coincides with those reported by Fukuyama and Terai [*8], Figure 5 b also includes data for the
operation of the LNB H-Oil VR hydrocracker when FCC SLO is processed along with the VRO
feed. The empty brown triangles designate the H-Qil diesel yield from the feed VR-FCC SLO
feed, while the empty blue circles designate the H-Oil VGO yield from the same feed. The
black crosses designate the H-Oil VTB yields obtained from the feed VR-FCC SLO feed. It is
evident from this data set that in some cases the H-Oil diesel yield is higher than that of the
feed 100% VRO, while in others the H-Oil diesel yield from the feed VR-FCC SLO feed fit to
the selectivity curve of feed 100% VRO. The same is valid for the VGO yield. The VTB yield
from the feed VR-FCC SLO feed lies completely of the curve of the feed 100% VRO which
suggests different fractionation efficiency since the FCC slurry in its distillation characteristics
pertains to the VGO cut and therefore its processing in the LNB H-Oil VR hydrocracker must
lead to a lower VTB yield. As illustrated with the data in Figure 5b the fractionation efficiency
of the LNB H-Oil VR hydrocracker has not been always the same. For that reason to discern
the effect of any change in the feedstock or in the operating conditions on the product yields
and selectivities dedicated test runs keeping the same efficiency of the fractionation should
be performed.

3.3. Effect of the amount of FCC SLO in H-Oil feed on FCC conversion and FCC product
yield structure

Having observed that the amount of FCC SLO in H-Oil feed has an effect on H-Oil VGO
density it is easier to suggest that this will have also effect on the FCC conversion. The equa-
tion developed in our earlier work [5°1 to relate the H-Oil VGO conversion to the share of H-
Oil VGO in FCCU feed and the FCCU conversion obtained during processing the blend of SRVGO
and H-Oil VGO allows us to estimate the H-Oil VGO conversion.
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Figure 6. Dependence of FCCU conversion (a), and yields of Cs cut, C4 cut, gasoline (b), LCO, HCO, and
SLO yields (c), and H-Oil VGO conversion on the content of FCC SLO in the H-Oil VR feed
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Figure 6 summarizes the effect of H-Oil feed FCC SLO content on FCCU conversion (Figure
6 a), and yields of Cs cut, C4 cut, gasoline (Figure 6 b), LCO, HCO, and SLO yields (Figure 6c),
and H-Oil VGO conversion. This data clearly indicates that the amount of FCC SLO processed
in the H-Oil VR hydrocracker affects the performance of the FCCU. Therefore, a proper balance
between the effect of FCC SLO on H-Qil hydrocracker performance and FCCU performance
must be searched in order to optimize the whole refinery performance.

4. Conclusions

A literature survey on the properties of FCC SLO measured by NMR techniques, and liquid
chromatography revealed that hydrogen content of the FCC SLO correlates with the aromatics
content determined by SARA analysis, fraction aromatic carbon, determined by NMR, the av-
erage number of aromatic rings per molecule in FCC SLO, and the FCC SLO density. Analysis
of FCC SLO samples taken at different FCC conversion levels did not show any effect of con-
version on the FCC SLO properties in the FCC conversion range 72.47-82.4%.

The addition of about 8% FCC SLO to the H-Qil VR feed decreases sediments from 0.3 down
to 0.1% even at increased WABT by 3°C. The distribution of FCC SLO among the H-Qil prod-
ucts was following: 15% in VTB; 60% in VGO, and 25% in diesel.

The increase of the amount FCC SLO in H-Oil feed decreases the FCC conversion, and the
yields of the higher value products: Cs cut, Cs cut, and gasoline, and increases the yields of
the lower value products: HCO, and SLO. An optimized balance between H-0il VR hydrocracker
and VGO FCCU performance related to the optimum amount of FCC SLO processed in the H-
Oil could improve the performance of the whole refinery.
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