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Abstract 
Shear wave velocity is a fundamental parameter for geophysical, geomechanical, and petrophysical 
studies. To date, many wells are absent in shear wave velocity measurements due to the high cost 
and time-consuming to acquire. Many researchers have recently implemented a machine learning 
approach to estimate shear wave velocity because of its robustness in predicting a non-linear 
paradigm. However, many previous studies neglect the importance of optimizing machine learning's 
hyperparameter as many preferred to configure the hyperparameter manually, which can be less 
efficient,  expensive to evaluate, and a time-consuming process. Optimizing the hyperparameters of 
machine learning is vital to obtain the maximum predictive potential. In this study, The Tree Parzen 
Estimator (TPE) Bayesian optimization algorithm was implemented to automatically fine-tuned the 
hyperparameters of Extreme Gradient Boosting (XGBoost), Random Forest (RF), and a Multi-Layered 
Perceptron Neural Network (MLPNN) algorithms. Subsequently, The effect of tuning hyperparameters 
on the performance of the technique is studied. Grid Search (GS) and Random Search (RS) algorithms 
are used to compare and evaluate the TPE-Bayesian optimization algorithm's performance. Common 
empirical relations for estimating shear wave velocity were also calculated to compare the performance 
between the empirical and machine learning approach. The results revealed that the TPE-Bayesian 
optimization algorithm managed to optimize the machine learning's hyperparameter and significantly 
improve the machine learning model's accuracy. Besides, the MLPNN algorithm optimized by the TPE-
Bayesian optimization algorithm was able to outperform other presented methods. When computing 
power is limited, XGBoost with the implementation of TPE-Bayesian optimization is recommended. 
Keywords: Shear wave velocity estimation; Extreme Gradient Boosting; Random Forest; MLP Neural Network; 
Tree Parzen Estimator; Bayesian hyperparameter optimization. 

1. Introduction

Shear wave and compressional wave velocity are crucial for geophysical, geomechanical,
and petrophysical studies. The application includes Amplitude Variation with Offset (AVO) [1], 
fluid type identification [2-3], pore type analysis [4], lithology identification [5-8], pore pressure 
prediction [9-11] and mechanical rock properties analysis [12-14]. However, many of the petro-
physical logs are often missing shear wave velocity measurements. While compressional wave 
velocity is measured using sonic log tools directly, measuring shear wave velocity is more 
complicated. It requires measurement either from core sample analysis or Dipole Sonic Imager 
(DSI) tools. Core sample analysis is a time-consuming process and expensive. Furthermore, 
the DSI tools may not be applicable for all of the wells [15]. Therefore, a considerable amount 
of research has been made to develop shear wave velocity prediction using the available well 
logs measurements.  

The two most common approach is based on empirical equation and artificial intelligence. 
Numerous studies have been made to predict shear wave velocity empirically. Pickett [5], 
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proposed an empirical equation to estimate a shear wave velocity based on the ratio of com-
pressional and shear wave velocity for a specific lithology. Greenberg and Castagna [16], de-
veloped shear wave velocity empirical equations using the compressional wave velocity and 
the rock composition for water-saturated clean sands. Brocher [17], proposed a shear wave 
velocity empirical equation valid only when the compressional wave is between 1.5 to 7.5 
km/sec. A comprehensive list of previous shear wave velocity empirical equations can be found 
in Oloruntobi and Butt [18]. Although empirical calculations are a more pronounced approach 
to predict shear wave velocity, empirical formulas are not accurate enough to meet the preci-
sion requirement for shear-wave prediction [19].  

Generally, empirical equations are not globally applicable as it is established based on a 
specific formation. Therefore, it requires to be calibrated and validated with the field data. 
Furthermore, it may not be applicable for heterogeneous formations as it is highly dependent 
on the formation's lithology [18]. 

Over the last few years, the implementation of artificial intelligence systems has been stud-
ied extensively in petroleum industries and demonstrated as more superior to conventional 
approaches. Recent studies includes reservoir characterization analysis [20-21], reservoir pa-
rameter prediction [22-23], stress and fracture reservoir evaluation [24-25], reservoir facies mod-
els and identification [26-28], distribution of hydrocarbon reservoirs [29], reservoir uncertainty 
analysis [30] and as well as lithology identification [31-33]. Based on the previous studies, the 
artificial intelligence approach has proven to be a robust method in determining non-linear 
relations without a prior assumption of the procedure involved between parameters.  

Several researchers have implemented artificial intelligence to predict shear wave velocity. 
Rezaee et al. [34], developed shear wave velocity prediction using fuzzy logic, neuro-fuzzy, 
and artificial neural network algorithm. In a study by Nourafkan [35], he integrates fuzzy logic 
algorithm with swarm intelligence (ant colony optimization). While Mehrgini [36], predicts the 
shear wave velocity using Elman neural network with the Levenberg-Marquardt algorithm. 
Based on the previous studies, the machine learning approach provides promising results in 
shear wave velocity prediction. However, many of the earlier studies neglect the importance 
of hyperparameter optimization.  

Having optimized configuration of hyperparameters enables the machine learning algorithm 
to obtain the maximum predictive potential. However, finding the optimal configuration of 
hyperparameters is a challenge. Many earlier studies fine-tuned their machine learning's hy-
perparameters model based on the heuristic approach and fine-tuned it manually. This ap-
proach can be inefficient, time-consuming, and expensive to evaluate. Besides, machine learn-
ing algorithms such as extreme gradient boosting and the neural network have many hyperpa-
rameters required to be tuned. Therefore, manually evaluate different configurations of hy-
perparameter can be overwhelmed. Many researchers are employing an optimization algo-
rithm to overcome the difficulty of optimizing machine learning's hyperparameters. 

The most common approach to optimize a machine learning algorithm's hyperparameter is 
by implementing the Grid Search (GS) and Random Search (RS) algorithm. GS explores the 
optimal set of hyperparameters by trying different combinations of all the hyperparameters 
from a search space. Whereas RS randomly searches for a group of optimal hyper-parameters 
from a search space. However, both approaches have their drawbacks. GS suffers from the 
dimensionality constraint when a substantial configuration of hyperparameters is evaluated. 
At the same time, RS finds the optimal hyperparameter randomly where no intelligence is 
used. Over the past years, there has been a considerable amount of research for more intel-
ligent hyperparameters optimization algorithm [37-40]. One of the most robust approaches is 
employing Tree Parzen Estimator (TPE) based on Bayesian optimization algorithm, which has 
proven to outperform other global optimization algorithms [41]. 

To the author's best knowledge, hyperparameter optimization algorithms have not been 
widely implemented, especially in shear wave velocity prediction. In this work, a workflow is 
proposed to predict shear wave velocity that implements TPE-Bayesian optimization algorithm 
to optimize the hyperparameter of presented machine learning models that includes; Extreme 
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Gradient Boosting (XGBoost), Random Forest (RF), and Multi-Layer Perceptron Neural Net-
work (MLPNN) algorithms. The performances of the machine learning models are then com-
pared. To evaluate the TPE-Bayesian optimization algorithm's performance, it is subsequently 
compared with the machine learning performance that utilized different hyperparameter algo-
rithms such as GS and RS algorithm. In this study, petrophysical well log data were used 
extracted from three wells drilled in X field, Malay Basin. Empirical equations to estimate shear 
wave velocity, such as Pickett [5], Castagna [16], and Brocher [17], are used to compare the 
performance between machine learning and empirical relation approach. All of the models' 
prediction accuracy is evaluated based on Root Mean Squared Error (RMSE) and the coefficient 
of determination (𝑅𝑅2). This study's outcome is a proposed method for the researchers to better 
predict the shear wave velocity using a machine learning approach that utilized a hyperpa-
rameter optimization algorithm, where many of the previous studies may neglect its im-
portance.   

2. Study area and datasets analysis   

In this work, the study area is from three adjacent wells located in X field, Malay Basin. 
Malay basin is situated offshore east of Peninsular Malaysia (Figure 1). It is one of the hydro-
carbon-bearing basins in Southeast Asia. It comprises of gas-rich zone, flanked on either side 
and to the south by mixed oil/gas [42]. The Malay basin was formed during the early tertiary 
and underlined by the pre-tertiary basement of sedimentary, metamorphic, and igneous rocks [43]. 
It is the deepest continental extensional basin in the region and is located at the center of the 
Sundaland Cratonic core of South East Asia. The Malay basin strata are subdivided informally 
into Seismo-stratigraphic units and referred to as "Groups". Shown in Figure 2 is the Stratig-
raphy of the Malay basin from unit A (youngest) to M (oldest). 

  
Figure 1. The geographic map location of the Ma-
lay Basin with its adjacent basin; Penyu, West 
Natuna, and Pattani Basin. Modified after [43] 

Figure 2. Generalized stratigraphy and structural 
history of the Malay Basin. Modified after [54]  
 

The stratigraphic development of the Malay Basin is directly related to its structural evolu-
tion. In the late-Oligocene, it undergoes an extensional or syn-rift phase. In the early to middle 
Miocene, the thermal subsidence phase occurred, and subsequently, in the Late-Miocene, it 
undergoes a basin inversion [42]. Based on the rock core samples analysis from three wells, 
the primary lithology are consists of interbedding of Sandstone, Claystone, Siltstone, and thin 
layers of coal. 
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To keep the wells confidential, the wells are renamed into Well A, Well B, and Well C. There 
are 9758, 5779, and 1693 data points in Well A, Well B, and Well C, respectively. The petro-
physical logs data that are utilized are Caliper (CAL), Bulk Density (RHOB), Gamma Ray (GR), 
Neutron Porosity (NPHI), Resistivity Deep (RD), Compressional Wave velocity (DTC), and 
Shear wave velocity (DTS) logs. Statistical data of these logs are presented in Table 1.  

Table 1. Statistical analysis of the petrophysical logs in the studied well 

Well 
Name 

Statistical 
Index 

Petrophysical well logs 
Depth 
(m) 

CAL 
(in) 

RHOB 
(g/cc) 

GR 
(API) 

NPHI 
(v/v) 

RD 
(Ohmm) 

VP 
(km/s) 

VS 
(km/s) 

Well A 

Mean 1892.59 13.39 2.46 100.34 0.27 2.83 2.73 1.31 
Min 1000.2 10.22 1.12 29.94 0.09 0.73 2.07 0.73 
Q1 1426.96 12.13 2.43 85.26 0.24 1.35 2.54 1.13 
Q2 1895.17 12.69 2.49 102.35 0.27 1.72 2.7 1.26 
Q3 2338.24 14.88 2.54 115.72 0.3 2.52 2.9 1.47 
Max 2709.98 19.74 2.77 237.17 0.57 308.25 3.75 2.09 

Well B 

Mean 1450.57 11.81 2.42 61.18 0.25 2.11 2.89 1.38 
Min 946.4 11.54 1.21 11.24 0.08 0.64 2.03 0.8 
Q1 1238.02 11.72 2.34 54.41 0.22 1.11 2.67 1.18 
Q2 1458.16 11.78 2.47 62.39 0.24 1.46 2.91 1.32 
Q3 1678.31 11.87 2.53 68.76 0.27 2.53 3.13 1.59 
Max 1907.59 14.04 2.68 100.52 0.64 30.67 3.55 2.02 

Well C 

Mean 1674.31 12.42 2.41 57.53 0.27 5.61 3 1.5 
Min 1545.05 12.25 1.18 8.44 0.06 0.87 1.99 0.68 
Q1 1609.52 12.39 2.37 50.37 0.21 1.45 2.93 1.39 
Q2 1673.98 12.41 2.52 61.56 0.25 1.87 3.06 1.5 
Q3 1739.51 12.42 2.56 67.48 0.27 2.88 3.18 1.71 
Max 1803.98 14.35 2.71 95.22 0.85 357.69 4.6 2.08 

3. Methodology 

Numerous data samples are mandatory to build an accurate machine learning model. There-
fore, because the higher number of data samples are available in Well A and Well B, both wells 
were used for the training dataset. Whereas, Well C is used for testing datasets. An attribute 
of  𝑉𝑉𝑝𝑝

√𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅
 is also used as an additional input for machine learning and denoted as VPDEN. 

The methodology of the study mainly consists of four steps procedure: (i) preprocessing 
the wireline log data, (ii) searching the optimal configuration hyperparameters using optimi-
zation algorithms, (iii) retraining the machine learning model using the optimized configura-
tion of hyperparameters based on the optimization algorithms, and lastly, (iv) evaluate the 
performance. The workflow of the study is illustrated in Figure 3. Firstly, in data preprocessing, 
elimination, and standardization of the petrophysical logs, data are performed. Subsequently, 
Tree Parzen Estimator Bayesian optimization algorithm is utilized to fine-tune the machine 
learning's hyperparameters automatically based on the defined search space. Grid Search and 
Random Search algorithms are used to compare and evaluate the effectiveness of the TPE 
Bayesian algorithm's performance. 

One hundred evaluations were set for the Bayesian optimization algorithm to search the 
optimized hyperparameters configuration. The list of hyperparameters and their range setting 
are shown in Table 2. Subsequently, using the hyperparameters configuration based on the 
optimization algorithm, the presented machine learnings are retrained to predict shear wave 
velocity from the test dataset. Finally, the accuracy of the three proposed machine learning 
algorithms with different hyperparameter optimization algorithms are evaluated using RMSE 
and 𝑅𝑅2 score. The shear wave velocity empirical equation includes Pickett [5], Castagna et al. [16], 
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and Brocher [17] are calculated to compare and evaluate the overall performance of the ma-
chine learning method.  

 
Figure 3. The workflow of the study 
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For interest, all the methodologies are performed using intel Xeon E5-2643 running at 3.30 
GHz and with 48 GB of RAM. Furthermore, all of the methodologies are utilizing the library 
packages on python version 3.8.3. To perform the TPE-Bayesian optimization algorithm, the 
Hyperopt library was used. Subsequently, Grid Seach and Random Search algorithm are per-
formed using the Sklearn library. To developed the machine learning models, the Tensorflow 
library was used to create the MLPNN model. Meanwhile, XGBoost and Random forest models 
are developed using the XGBoost and SKlearn library, respectively. 

3.1. Eliminating the outliers 

The quality of logging data depends on environmental conditions, poor instrument calibra-
tion, and human error [44-45]. Therefore, it is crucial to filter out some of these invalid meas-
urements. For this study, a quality check is performed by identifying the bad hole based on 
caliper and bulk density correction logs. All of the bad hole measurements are then removed 
from the training and testing dataset. 

3.2. Data standardization 

Data standardization is commonly carried out before training any machine learning model, 
especially training a deep learning model. Many machine learning algorithms do not perform 
well when the numerical input attributes have different large scales [46]. Since each of the 
petrophysical logs data have a different scale or unit, standardization of the dataset is neces-
sary. In this work, the standard score equation (equation 1) is used to standardize the scale 
of petrophysical logs. Where 𝜇𝜇 is mean, and 𝜎𝜎 is standard deviation.  
𝑧𝑧 =  

𝑥𝑥 −  𝜇𝜇
𝜎𝜎

 (1) 

3.3. Hyperparameters optimization method 

3.3.1. Hyperparameters  

Hyperparameters are parameters that determine the learning process of a machine learning 
algorithm. It does not learn directly from the input and requires to be tuned before training 
the model. The problem of hyper-parameters optimization can be expressed mathematically [47] 
as trying to locate an input 𝑥𝑥∗ in a domain 𝑋𝑋 (𝑥𝑥∗ ∈ 𝑋𝑋) to an unknown objective function 𝑓𝑓 (𝑓𝑓 ∶
𝑋𝑋 →  ℝ) which minimize the value of this function over 𝑋𝑋 such that: 
𝑥𝑥∗  ∈ 𝑎𝑎𝑎𝑎𝑎𝑎  𝑚𝑚𝑚𝑚𝑚𝑚 {𝑓𝑓(𝑥𝑥)}

𝑥𝑥 ∈ 𝑋𝑋
 (2) 

In general, the complexity or regularization is controlled by machine learning algorithms' 
hyperparameters [48]. Therefore, tuning and finding the optimal configuration of hyperparam-
eters is essential. Manually tuned the hyperparameters of machine learning is a challenge as 
it depends on the trial-and-error approach and experience [40]. In addition, retraining the 
machine learning model to evaluate the effect changes from a different set of hyperparameter 
configurations is very costly.  

3.3.2 Bayesian hyperparameters optimization 

The Bayesian optimization algorithm is commonly used for optimizing the hyperparameter 
of the machine learning models. It is a robust method for optimizing the objective functions 
that are expensive to evaluate [38,48]. The Bayesian optimization algorithm was able to out-
perform grid search and random search in the hyper-parameter optimization tuning. Previous 
studies show that Bayesian optimization requires a smaller iteration to converge a solution, 
and it is more generalized on the testing dataset than GS and RS algorithms [40]. Bayesian 
optimization algorithm builds a probabilistic surrogate model based on the target value's pre-
vious evaluation result to minimize the objective function. Like any other hyperparameter 
optimization algorithm, search space is required to be defined as a bounded boundary to re-
strict the objective function's search limit.  
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In the present study, the search space for all of the presented optimization algorithms is 
shown in Table 2. To evaluate the performance of the TPE-Bayesian optimization (TPE-BO) 
algorithm, it is compared with Grid Search (GS) and Random Search (RS). The GS and RS 
algorithm are become more expensive to evaluate when the search space is expansive. There-
fore, to reduce the computational cost, the search space's increment was reduced while the 
hyperparameters configuration and range setting remain.  Root Means Squared Error (RMSE) 
was used to evaluate the grid search and random search for every iteration. Furthermore, 
seven-fold cross-validations were used as a resampling technique to evaluate the machine 
learning models. To evaluate hyperparameter optimization's significance, we also compared 
with the machine learning models without utilizing any hyperparameter optimization. 

Table 2. The tuned hyperparameters and their range setting for each of the proposed machine learning 
algorithms 

Machine 
Learning 
Algorithm 

Tuned Hyperpa-
rameters 

TPE-BO algorithm GS and RS algorithm Default hyperpa-
rameters 

Range Setting Step Distribution Range Setting Step Value 

XGBoost 

Max depth 1 – 10 1 Choice 1-10 2 6 

Learning rate 0.01    - 0.1 0.001 Quniform 0.01-0.1 10 0.01 

Colsample by level 0.1 – 1 - Uniform 0.1-1 0.2 1 

N estimators 1000 - 3000 - Uniform 1000-3000 500 0 

Reg alpha 1 – 10 1 Quniform 1-10 2 0 

subsample 0.1 - 1 0.1 Quniform 0.1-1 0.2 1 

RF 

Min samples split 0 – 1 - Uniform 0-0.5 0.1 2 

Min samples leaf 0 – 0.5 - Uniform 0-0.5 0.1 1 

N estimators 100 – 500 1 Choice 100-500 100 100 

Max features sqrt, log2, 0.2, 
0.5, 0.8 - Choice sqrt, log2, 0.2, 

0.5, 0.8 - 'auto' 

Max depth 1-10 - Uniform 1-10 2 None 

MLPNN 
  

Batch Size 16,32,64,128 - Choice 64,128 - 128 

Optimizer function Adam, RMSprop, 
SGD - Choice Adam, RMSprop, 

SGD - Adam 

Learning rate 0.001 – 0.01 0.001 Quniform 0.001,0.01 - 0.01 
Activation func-
tion Relu, Sigmoid - Choice Relu, Sigmoid - Relu 

Number of units 3 – 30 - 5, 10, 15, 
25, 30 5, 10, 15, 25, 30 - 3,12,35 

3.3.3. Sequential Model-Based Optimization (SMBO) 

Sequential Model-Based Optimization (SMBO) is the formalization of Bayesian optimization. 
Essentially, SMBO runs trials successively, and in every trial, it tries to look for better hy-
perparameters by implementing Bayesian reasoning and updating a surrogate (probability) 
model. The procedure and pseudocode of SMBO are shown in Figure 4 [48]. SMBO firstly 
mapped the hyperparameter's configuration λ into a Surrogate model S to the loss function L 
and history H, to record the hyperparameter's configuration and loss value. Then SMBO iter-
ates the following steps: 

1. Looks for the local optimal hyper-parameter setting based on the present model 𝑆𝑆𝑡𝑡−1. 
2. Calculate the loss 𝑐𝑐 under the settings 𝜆𝜆∗. 
3. Update H to store 𝜆𝜆∗ and the corresponding loss 𝑐𝑐. 
4. Build a new model 𝑆𝑆𝑡𝑡 correspond to the updated record H. 
5. Iteration stop till it reaches the pre-determined maximum iteration number. 
6. The SMBO outputs the global optimal hyper-parameter settings with the minimum 𝑐𝑐. 
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Figure 4. Pseudocode of Sequential Model-Based Optimization 

In this study, Root Mean Squared Error (RMSE) was used as a metric to measure the ob-
jective function's loss score. The Tree Parzen Estimator was used as the surrogate model to 
evaluate the different configurations of hyperparameters. One hundred were set as the max-
imum iteration or evaluation for the TPE-Bayesian optimization to search the hyperparame-
ters' optimized configuration based on the restricted search space (Table 3). 

Table 3. The chosen hyperparameters values for XGBoost, RF, and MLPNN algorithm based on TPE 
Bayesian optimization 

Machine 
Learning 
Algorithm 

Hyperparameters TPE-BO GS RS 

XGBoost 

Max depth 1 2 2 

Learning rate 0.057 0.01 0.01 

Colsample by level 0.477 0.6 0.4 

N estimators 1316.2 3000 1500 

subsample 0.7 0.2 0.4 
reg alpha 2 2  

RF 

Min Sample Split 0.07 0.2 0.5 

Min Sample Leaf 0.028 0.01 0.02 

N Estimators 321 100 100 

Max Features sqrt 0.5 0.5 

Max Depth 5.025 8 8 

MLPNN 

Batch Size 128 128 128 

Optimizer function RMSprop Adam Adam 
Layers 1 2 3 1-3 1-3 

Learning rate 0.1 0.001 0.01 0.01 0.01 

Activation function Sigmoid ReLu ReLu Sigmoid Sigmoid 
Number of units 12 11 5 15 15 

3.3.4. Tree Parzen Estimator (TPE) Surrogate model 

As aforementioned, SMBO builds a surrogate model based on the previous evaluation re-
sult. The Surrogate or probability model is a representation of the objective function. It is used 
for training different sets of hyperparameter settings to predict the performance of the learn-
ing algorithm based on a given hyperparameters setting and dataset. It is cheaper to evaluate 
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in a surrogate model compared to the objective function [40]. In the SMBO framework algo-
rithm, there are three common variants of the surrogate model: Gaussian Process (GP), Tree 
Parzen Estimators (TPE), and Random Forest Regressions (RFR). 

In this study, TPE was used as the surrogate model. TPE [40] is an unconventional approach 
to SMBO. While the GP model the predictive distribution over the objective function, TPE cre-
ates two hierarchical processes ℓ(𝜆𝜆) and 𝑎𝑎(𝜆𝜆) acting as generative models for all domain vari-
ables. These processes model the domain variables when the objective function is in the range 
of defined threshold 𝑐𝑐∗: 

𝑝𝑝𝑠𝑠(𝑐𝑐|𝜆𝜆) =  � 𝑙𝑙
(𝜆𝜆), 𝑚𝑚𝑓𝑓 𝐶𝐶 <  𝐶𝐶∗,
𝑎𝑎(𝜆𝜆), 𝑚𝑚𝑓𝑓 𝐶𝐶 ≥  𝐶𝐶∗. (3) 

where ℓ(𝜆𝜆) is the density estimate built from the observations based on the value of loss func-
tion 𝑐𝑐, which is less than the threshold 𝑐𝑐∗ in 𝐻𝐻 and g(λ) is formed from the remaining observa-
tions. To determine 𝜆𝜆∗, corresponding to the current model 𝑆𝑆𝑡𝑡 for the t times loop, SMBO is 
using the acquisition function. The two most common types of acquisition functions are Ex-
pected Improvement (EI) and improvement (I). EI can be expressed as: 

EI(𝜆𝜆)  = � max (𝐶𝐶𝑚𝑚𝑚𝑚𝑚𝑚 − 𝑐𝑐(𝜆𝜆), 0) ∙ 𝑝𝑝𝑆𝑆𝑡𝑡(𝑐𝑐|𝜆𝜆)𝑑𝑑𝑐𝑐
𝐶𝐶𝑚𝑚𝑚𝑚𝑚𝑚

−∞
 

(4) 

where, 𝐶𝐶𝑚𝑚𝑚𝑚𝑚𝑚 and 𝑐𝑐(𝜆𝜆) denote the current minimum loss in 𝐻𝐻 and the loss under the hyper-pa-
rameter setting λ, respectively. The improvement I can be expressed as:  
I(𝜆𝜆) = max(𝑐𝑐𝑚𝑚𝑚𝑚𝑚𝑚 − 𝑐𝑐(𝜆𝜆), 0) (5) 

A more detailed explanation of the parameter adjustment process of TPE is discussed by Berg-
stra et al. [40]. 

3.4. Shear wave velocity estimation using Intelligence Methods 

3.4.1. Extreme gradient boosting (XGBoost) 

In recent years, Extreme gradient boosting or XGBoost has become a popular machine 
learning algorithm because of its efficiency, rapidness, and scalability [49]. It is a novel version 
of gradient boosting and was proposed by Chen and Guestrin [49]. XGBoost is a supervised 
algorithm that is based on boosting, one of the ensemble learning methods. The main idea of 
boosting is to compile the base learner sequentially, and each tries to correct the predecessors 
to be a strong learner. The process of XGBoost is to fits an additive base learner that minimizes 
the loss function by letting the loss function decrease in the direction of its gradient [50]. Chen 
and Guestrin have improved the gradient boosting algorithm by implementing a regularization 
term into the objective function. Regularization is a technique used to prevent the model from 
overfitting by adding a penalty term to the cost function. Additionally, XGBoost performs sec-
ond-order Taylor expansion to the objective function, allowing XGBoost to define the loss 
function more accurately. XGBoost objective function is defined in the following equation: 
 

𝑂𝑂𝑂𝑂𝑂𝑂𝑡𝑡 = �𝐿𝐿�𝑦𝑦𝑚𝑚 ,𝑦𝑦𝚤𝚤�
(𝑡𝑡)� +  �Ω(𝑓𝑓𝑡𝑡)

𝑡𝑡

𝑚𝑚=1

𝑚𝑚

𝑘𝑘=1

 (6) 

where, 𝑦𝑦𝚤𝚤�
(𝑡𝑡) and 𝑓𝑓𝑡𝑡 denote given data samples, the prediction at the 𝑡𝑡𝑡𝑡ℎ and the structure of a 

decision tree (the base learner), respectively. ∑ 𝐿𝐿�𝑦𝑦𝑚𝑚 ,𝑦𝑦𝚤𝚤�
(𝑡𝑡)�𝑚𝑚

𝑘𝑘=1  is the training loss function that 
describes who well the fit is with training data. The regularization Ω(𝑓𝑓𝑡𝑡) for penalizing the com-
plexity of the model is calculated using: 

Ω(𝑓𝑓𝑡𝑡) =  𝛾𝛾𝛾𝛾 +
1
2
𝜆𝜆‖𝜔𝜔‖2 (7) 

where 𝛾𝛾 is the penalty coefficient, the minimum loss is needed to partition the leaf node fur-
ther. 𝜆𝜆 is the regularization hyperparameter, and 𝜔𝜔 is the vector of scores in the leaves. The 
function of the model after the prediction at the 𝑡𝑡th is calculated by adding the prediction at 
(𝑡𝑡-1)th with a new decision tree. The objective function is subsequently updated to: 
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𝑂𝑂𝑂𝑂𝑂𝑂(𝑡𝑡) = �𝐿𝐿(
𝑚𝑚

𝑚𝑚=1

𝑦𝑦𝑚𝑚 ,𝑦𝑦𝚤𝚤�
(𝑡𝑡−1) + 𝑓𝑓𝑡𝑡(𝑥𝑥𝑚𝑚)) + Ω(𝑓𝑓𝑡𝑡) (8) 

where 𝑦𝑦𝚤𝚤�
(𝑡𝑡−1) denotes the (t-1)th iteration prediction function, and 𝑓𝑓𝑡𝑡(𝑥𝑥𝑚𝑚) denotes a new decision 

tree.  
XGBoost approximates using the 2nd-order Taylor expansion to optimize the objective in 

the general setting efficiently. 

𝑂𝑂𝑂𝑂𝑂𝑂(𝑡𝑡) ≅�[𝐿𝐿(
𝑚𝑚

𝑚𝑚=1

𝑦𝑦𝑚𝑚 ,𝑦𝑦𝚤𝚤�
(𝑡𝑡−1) + 𝑎𝑎𝑚𝑚𝑓𝑓𝑡𝑡(𝑥𝑥𝑚𝑚) +

1
2
ℎ𝑚𝑚𝑓𝑓𝑡𝑡2(𝑥𝑥𝑚𝑚) + Ω(𝑓𝑓𝑡𝑡) (9) 

where 𝑎𝑎𝑚𝑚 =  𝜕𝜕𝑦𝑦𝚤𝚤�(𝑡𝑡−1)𝐿𝐿�𝑦𝑦𝑚𝑚 ,𝑦𝑦𝚤𝚤�
(𝑡𝑡−1)� and ℎ𝑚𝑚 =  𝜕𝜕

,𝑦𝑦𝚤𝚤�
(𝑡𝑡−1)

2 𝐿𝐿�𝑦𝑦𝑚𝑚 ,𝑦𝑦𝚤𝚤�
(𝑡𝑡−1)� are 1st and 2nd order gradient statistics 

of the loss function, respectively. For more thorough explanations of the XGBoost algorithm 
is discussed by Chen and Guestrin [49]. 

3.4.2. Random forest regression 

Random Forest (RF) algorithm was introduced by Breiman [51]. It has been widely imple-
mented to solve classification and regression problems because of its flexibility and fast ma-
chine learning algorithm. RF is an ensemble learning method that uses a bagging or bootstrap 
aggregation approach to compile the base learners. The general idea of bagging is to train the 
base learner independently and use the average estimation for the result [52]. It is shown in 
Figure 5, the workflow diagram of random forest regression. Firstly, the process of RF regres-
sion creates the number of different bootstrap samples by resampling the training dataset 
randomly with replacement. Hence, to increase the diversity of the decision trees (base 
learner) during training. Then RF construct numbers of regression trees (K) and take the av-
erage results 𝐻𝐻(𝑥𝑥). The final output result of the regression model is shown the following 
equation  

𝐻𝐻(𝑥𝑥) =
1
𝐾𝐾
�ℎ𝑚𝑚(𝑥𝑥)
𝐾𝐾

𝑚𝑚=1

 (10) 

where 𝐻𝐻𝑚𝑚(𝑥𝑥) is the output of the 𝑚𝑚-th regression tree (𝛾𝛾𝑚𝑚)  

 
Figure 5. Workflow diagram of random forest regression 

3.4.3. Multilayer Perceptron (MLP) Neural Network 

Artificial Neural Network (ANN) has become more prevalent in recent years because of its 
ability to determine the non-linear relation without a prior assumption of the procedure in-
volved between parameters. A traditional ANN architecture is known as a multilayer percep-
tron (MLP). MLP is one of the extensively used ANN architecture [53]. It is a feedforward neural 
network that consists of input, hidden, and output layers. Shown in Figure 6 is the illustration 
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of the MLP neural network. These layers are fully connected, and each layer is associated with 
the weight value. Multi-Layer Perceptron Neural Network (MLPNN) commonly employs the 
backpropagation or gradient descent technique to adjust and optimize the weight value based 
on the actual and predicted values' loss function. The process is repeated until it reached maximum 
iteration to obtain the minimum value of the loss function and the optimal weight values. 

 
Figure 6. MLP architecture used in the study 

3.5. Empirical calculation 

In this work, three common shear wave velocity estimation empirical formula includes 
Pickett [5], Castagna et al. [16], and Brocher [17] are used to compare the performance of the 
machine learning model. The equations are shown in the following, where 𝑣𝑣𝑝𝑝 and 𝑣𝑣𝑠𝑠 is in km/s unit. 
Pickett [5]:  
𝑣𝑣𝑠𝑠 =  

𝑣𝑣𝑝𝑝
1.75

 (12) 

Castagna et al. [16]:  
𝑣𝑣𝑠𝑠 =  0.80416𝑣𝑣𝑝𝑝 − 0.85588 (13) 

Brocher [17]: 
𝑣𝑣𝑠𝑠 =  0.7858 − 1.2344 𝑣𝑣𝑝𝑝 + 0.7949𝑣𝑣𝑝𝑝2 − 0.1238 𝑣𝑣𝑝𝑝3 + 0.0064𝑣𝑣𝑝𝑝4 (14) 

3.6. Performance metrics 

To analyze the performance of the estimation, metrics such as Root Mean Squared Error 
(RMSE) and coefficient of determination (𝑅𝑅2) were employed. RMSE value that is close to 0 
indicates that the error is prediction is low. RMSE is calculated by: 

𝑅𝑅𝑅𝑅𝑆𝑆𝑅𝑅 = �
1
𝑚𝑚
�(𝑦𝑦𝑚𝑚 − 𝑦𝑦�𝑚𝑚)2
𝑚𝑚

𝑚𝑚=1

 (15) 

𝑅𝑅2 value closer to 1 indicates that the predicted value is better for data fitting. The equation 
for 𝑅𝑅2 is shown in the following. 

𝑅𝑅2 = 1 −  
∑(𝑦𝑦𝑚𝑚 − 𝑦𝑦�𝑚𝑚)2

∑(𝑦𝑦𝑚𝑚 − 𝑦𝑦�)2
 (16) 
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4. Results and discussion 

In this section, the presented machine learning models: XGBoost, RF, and MLPNN,  are 
compared systematically using three different hyperparameter optimization algorithms: Tree 
Parzen Estimator – Bayesian Optimization (TPE-BO), Grid Search (GS), and Random Search 
(RS), with respect to the accuracy and rapidity. Furthermore, to evaluate the machine learning 
method's overall performance, common empirical relations for shear wave velocity estimation 
such as Picket [5], Castagna et al. [16], and Brocher [17] were used. To illustrate the perfor-
mance, we utilized the traditional regression performance metrics includes RMSE and 𝑅𝑅2. Table 4 
summarizes the presented model's performance and evaluation time based on the test da-
taset. Additionally, the total evaluation time, RMSE, 𝑅𝑅2, and is ranked and illustrated in Figures 
8, 9, and 10, respectively.  

Table 4. Summarized the performance of Machine Learning method 

Machine Learning algo-
rithm Optimization Algorithm 

Evaluation Index  

RMSE 𝑹𝑹𝟐𝟐 
Elapsed 

time 
(sec) 

XGBoost  

TPE-Bayeisan optimiza-
tion 0.120 0.899 130.9 

Grid Search 0.108 0.83 16116.2 

Random Search 0.108 0.828 149.6 

- 0.135 0.729 0.6 

RF  

TPE-Bayeisan optimiza-
tion 0.094 0.884 306.9 

Grid Search 0.113 0.81 5892 

Random Search 0.116 0.802 49.6 

- 0.136 0.728 6.59 

MLPNN  

TPE-Bayeisan optimiza-
tion 0.076 0.918 1068.6 

Grid Search 0.119 0.789 6448.3 

Random Search 0.112 0.779 1879.0 
- 0.153 0.652 3.7 

** where XGBoost is Extreme Gradient Boosting Algorithm, RF is Random Forest algorithm, MLPNN is Multi-Layer 
Perceptron Neural Network, and TPE is Tree Parzen Estimator 

4.1. Hyper-parameters tuning performance 

As aforementioned, in this study, the presented machine learning's hyperparameters are 
tuned using the TPE-BO algorithm. Subsequently, it was compared with the RS and GS algo-
rithms to evaluate the TPE-BO algorithm's performance. The elapsed time for all machine 
learning models was recorded to evaluate and compare the presented models' rapidity.  

The TPE-BO algorithm evaluates the optimal hyperparameter configuration based on the 
loss function of every objective function. In this study, the RMSE metric is used as the loss 
function to evaluate every objective function. The objective function lowest RMSE score is then 
chosen as the best model with the best configuration of hyperparameter.  

Table 4 summarized the performance metrics for all of the presented methods. The result 
revealed that the three hyperparameter optimization algorithms significantly improve the ma-
chine learning algorithm's accuracy. Furthermore, the TPE-BO algorithm performed signifi-
cantly better in all of the presented machine learning models compared to the GS and RS algo-
rithms. Meanwhile, the GS algorithm shows a slightly better improvement than the RS algorithm. 

The less effective performance by the GS and RS algorithms is expected as neither algo-
rithm uses any correlation between different configurations of hyperparameters. Furthermore, 
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both algorithms are using a smaller search space than the TPE-BO algorithm. Despite their 
drawbacks, both algorithms performed better than without using any hyperparameter optimi-
zation algorithm at all. Manually tuned hyperparameter can take a long time as it requires a 
trials and error approach. Furthermore, it is expensive to evaluate as it requires retraining 
multiple trials.  

The illustration from Figure 7 shows the loss score of every evaluation of the TPE-BO algo-
rithm for each of the presented machine learning models. The diagram shows that the TPE-
BO algorithm was able to find the lowest loss score of an objective function at earlier evalua-
tion than the number of maximum evaluation. Once the optimal configuration of the hyperpa-
rameter is found,  no further improvement will be acquired. Besides, It is also observed that 
the TPE-BO algorithm performed better in the MLPNN algorithm than RF and XGBoost algo-
rithms. In the MLPNN algorithm, the lowest loss score of the objective function based on the 
TPE-BO algorithm is 0.0062. While in contrast, RF and XGBoost algorithm are 0.009 and 0.01, 
respectively. Based on the loss score for every TPE-BO evaluation, the MLPNN algorithm was 
better optimized in minimizing the objective function than the XGBoost and RF algorithm. It can be 
seen from the gradual decrease of the loss score for the subsequent evaluation. In contrast, 
in the RF algorithm, TPE-BO algorithm seems to have difficulties in minimizing the loss score.  

 
Figure 7. The result of each iteration and loss score based on A) XGBoost, B) RF, and C) MLPNN 

Shown in Table 4 are the evaluation metrics score and the elapsed time to complete the 
maximum evaluation. Figure 8 ranked the elapsed time to complete the evaluation of every 
machine learning model. The result revealed that GS and RS algorithms are generally slower 
to evaluate despite the smaller search space than in the TPE-BO algorithm.  

The RS algorithm is generally faster to evaluate compared to GS and TPE-BO algorithm. In 
RS, it took 149.6, 49.6, and 1879.0 seconds to search and optimize the hyperparameter of 
the XGBoost, RF, and MLPNN algorithm, respectively. GS took the slowest time, where it took 
16.116, 5.892, and 6448.3 seconds to optimize the hyperparameter of XGBoost, RF, and 
MLPNN algorithms, respectively. Both GS and RS algorithms did not use any intelligence in 
selecting different hyperparameter configurations. The GS algorithm took the longest to eval-
uate as it requires to explores every hyperparameter by trying different combinations of all 
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the hyperparameters from a search space. In comparison, the RS algorithm searches the 
configuration of hyperparameters based on the number of iteration that has been set and 
randomly selects the configuration of hyperparameter from the defined search space. Hence, 
the quickest to evaluate. 

 
Figure 8. Ranked all of the models based on the time taken to complete 

 
Figure 9. Ranked the performance of RMSE score for all of the presented models. A lower RMSE score 
indicates a better correlation 

 
Figure 10. Ranked the performance of 𝑅𝑅2 score for all of the presented models. Higher 𝑅𝑅2 score indicate 
better correlation 
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Observing the evaluation time taken for the TPE-BO algorithm, the XGBoost algorithm is 
the fastest to evaluate (130.87 Sec), while the MLPNN algorithm took the longest (1068.6 
Sec). XGBoost algorithm is known as the improved algorithm of the gradient boosting algo-
rithm. It mainly designs for efficiency and performance. Therefore, it was able to optimize 
faster compared to RF and MLPNN algorithm. In contrast, the MLPNN algorithm is more com-
plex to compute and requires higher computing power. 

Optimizing the hyperparameter of a machine learning algorithm improved the accuracy of 
the machine learning models. Ideally, one should be able to list all of the hyperparameters 
with their maximum range values. Thereby ensuring the hyperparameter optimization algo-
rithm can obtain the best values for every configuration of hyperparameter. However, this is 
not the case. Based on the observation, the three hyperparameters optimization algorithm's 
performance is affected by the search space's size, especially GS and RS. However, comparing 
the three optimization algorithms, the TPE-BO algorithm has shown to be less affected by the 
search space's size as it can search in a more expansive search space while still maintaining 
accuracy and evaluation time.  

The most crucial step to obtain the best configuration of hyperparameters when utilizing 
the TPE Bayesian optimization algorithm is to configure the hyperparameter's search space. 
Machine learning algorithm such as XGBoost and MLPNN algorithm has many hyperparameters 
that would significantly affect the performance. Therefore, to optimize the hyperparameter's 
search space, it is essential to have the machine learning algorithm's domain knowledge and 
background. Furthermore, conducting multiple evaluations of TPE-Bayesian optimization is 
necessary to conceptualize the optimized search space. It is accomplished by observing the 
optimized hyperparameter's configuration based on multiple evaluations. Subsequently, grad-
ually reduce the range setting of the hyperparameter based on the result of the previous 
evaluations. Therefore, it allows the TPE-BO algorithm to evaluate in a smaller search space 
and explore in a more optimized range setting for each hyperparameter. 

4.2. Overall performance measures 

The summary of the RMSE and 𝑅𝑅2 score for the testing dataset of the machine learning 
models is shown in Table 4. Meanwhile in Table 5 shows the RMSE and 𝑅𝑅2 score based on the 
empirical relation approaches. Figures 11, 12, 13, and 14 compare every presented model 
with the measured shear wave velocity.  

Table 5. Summarized the performance of empirical relations 

Empirical equations 
Evaluation Index 

RMSE 𝑅𝑅2 

Picket [5] 0.25 0.804 
Castagna et al. [16]  0.131 0.804 
Brocher [17]  0.144 0.806 

In general, all of the presented methods closely follow the measured shear wave velocity 
trend. Based on the RMSE and 𝑅𝑅2, the MLPNN optimized by the TPE-BO algorithm (RMSE= 
0.076 & 𝑅𝑅2= 0.918) is shown as the best performance compared to the other approaches. 
Furthermore, the overall top-order performance is followed by XGBoost with TPE-BO (RMSE= 
0.119 & 𝑅𝑅2= 0.899), RF with TPE-BO (RMSE= 0.094 & 𝑅𝑅2= 0.884), and RF with GS (RMSE= 
0.113 & 𝑅𝑅2= 0.81) algorithm.  

Comparing the three machine learning algorithm's performance, optimized by the TPE-BO 
algorithm, the XGBoost algorithm could better predict the lower and higher extreme values 
(shown in Figure 11) where lower frequency data samples points are available. In contrast, 
the RF algorithm performed better at the higher frequency data samples (shown in Figure 12). 
The overall best performance appears to be the MLPNN algorithm. It was able to nearly follow 
the trend of the measured shear wave velocity throughout the depth intervals. 
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Figure 11. Comparison of XGBoost models with the measured shear wave velocity. (a) Measured Shear 
velocity vs. XGBoost with the implementation of TPE-BO algorithm, (b) Measured Shear velocity vs. 
XGBoost with the implementation of Random Search algorithm, (c) Measured Shear velocity vs. XGBoost 
with the implementation of Grid Search algorithm, and (d) Measured Shear velocity vs. XGBoost without 
hyperparameter optimization 

All of the RMSE scores for all presented models are ranked and shown in Figure 9. It illus-
trated that the Castagna et al. [16] equation performed better than the machine learning meth-
ods that did not utilize hyperparameter optimization algorithm. Furthermore, based on the 
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value of 𝑅𝑅2, all three empirical relation approaches performed better than the RF and MLPNN 
algorithms that utilized the RS algorithm, the MLPNN algorithm that utilized the GS algorithm, 
and all machine learning algorithms that did not utilize any optimization algorithm. 

 
Figure 12: Comparison of Random Forest models with the measured shear wave velocity. (a) Measured 
Shear velocity vs. Random Forest with the implementation of TPE-BO algorithm, (b) Measured Shear 
velocity vs. Random Forest with the implementation of Random Search algorithm, (c) Measured Shear 
velocity vs. Random Forest with the implementation of Grid Search algorithm, and (d) Measured Shear 
velocity vs. Random Forest without hyperparameter optimization 
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Figure 13. Comparison of MLPNN models with the measured shear wave velocity. (a) Measured Shear 
velocity vs. MLPNN with the implementation of TPE-BO algorithm, (b) Measured Shear velocity vs. MLPNN 
with the implementation of Random Search algorithm, (c) Measured Shear velocity vs. MLPNN with the 
implementation of Grid Search algorithm, and (d) Measured Shear velocity vs. MLPNN without hyperpa-
rameter optimization 

Comparing the three empirical relations used in this study, all empirical relations followed 
the measured shear wave velocity trend. Furthermore, Castagna [16] and Brocher [17] shows 
the best performance where (RMSE= 0.131, 𝑅𝑅2= 0.804) and (RMSE= 0.144, 𝑅𝑅2= 0.806), respec-
tively. Picket [5] equation demonstrate to be the lowest performance (RMSE= 0.250, 𝑅𝑅2= 0.804)  

484



Petroleum and Coal 

                          Pet Coal (2022); 64(2): 467-488 
ISSN 1337-7027 an open access journal 

All of the empirical equations use compressional velocity to estimate shear wave velocity 
as it is closely related. Although empirical equations were able to follow the measured shear 
wave velocity trend closely, there are many intervals that the empirical equation underesti-
mates or overestimates the measured shear wave velocity, as shown in Figure 14. Further-
more, the equation by Pickett [5] mostly overestimates the actual shear wave velocity. In 
contrast, Brocher's equation [17] was able to closely follow the actual shear wave velocity in 
most depth intervals. The empirical equations used in the study are solely dependent on the 
compressional velocity and are based on a specific field study. Therefore, adjustment of the 
constant value is necessary to obtain better performance. 

 
Figure 14: The comparison of estimated and measured shear wave velocity using empirical calculation 
methods. (a) Measured Shear velocity vs. Picket [5], (b) Measured Shear velocity vs. Castagna et al. 
[16], and (c) Measured Shear velocity vs. Brocher [17] 

Overall, this study shows the importance of optimizing the machine learning algorithm's 
hyperparameter as it significantly affects the prediction accuracy. Implementing a hyperpa-
rameter optimization algorithm is necessary because it can increase the machine learning 
model's accuracy and eases the researchers from manually tuning the hyperparameter. An 
intelligent optimization algorithm such as the TPE-BO algorithm is recommended because it 
has proven to obtain the hyperparameter's best configurations. 
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5. Conclusion 

The present study signifies the importance of utilizing the appropriate implementation of 
the hyperparameter optimization algorithm. Many previous authors neglected the importance 
of proper hyperparameter optimization and preferred to manually fine-tune the hyperparam-
eter configuration in predicting shear wave velocity, which can be inefficient, time-consuming, 
and expensive to evaluate. The result revealed that ML methods that utilized the optimized 
configuration of hyperparameters are performing better than the empirical equation approach.  

Furthermore, the comparisons between different optimization algorithms show the TPE-BO 
algorithm's superiority over GS and RS algorithm. The TPE-BO algorithm significantly im-
proved the accuracy of all presented machine learning models. The MLPNN algorithm, with the 
implementation of the TPE-BO algorithm, demonstrate to be the best prediction model. Fur-
thermore, the predictive performance and the overall order of prediction are followed by the 
XGBoost and RF algorithm optimized by the TPE-BO algorithm. Comparing the XGBoost and 
RF model optimized by the TPE-BO algorithm,  the XGBoost model performed slightly better 
than the RF model. At some intervals, the RF model is showing more overfitting than the 
XGBoost model. When computing power is limited, the XGBoost algorithm with the implemen-
tation of the TPE-BO algorithm can be used as an alternative approach as it is more efficient 
than the MLPNN algorithm. 
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