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Abstract 

The aim of this work is to study the process of catalytic isomerization of light naphtha by the method 
of mathematical modelling. The influence of temperature and feedstock flow rate on octane number 

and yield of the product (branched alkanes) was studied depending on the feedstock composition. The 
temperature mode of the process was optimized depending on the composition and feedstock flow 

rate. 
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1. Introduction  

Motor fuel is one of the most demanded products of the oil refining industry. The demand 
for motor fuel is constantly increasing all over the world [1-5]. Currently, the tendency towards 
increasing the demand for motor fuel of meeting EURO standards is observed [6-10]. Isomeri-

zation of gasoline fractions is the process of obtaining a high-octane component of gasoline 
fuels by converting linear hydrocarbons into isomers. The studies on oil refining processes 
using the method of mathematical modelling are relevant these days. The models, developed 
based on the thermodynamic and kinetic regularities of the processes, allows making recom-
mendations for control of the technological parameters of industrial processes, which ensures 

meeting specifications for product quality and achieving an optimal yield of the product in the 
conditions of constantly changing the composition of the feedstock. The aim of this work is to 
study the process of catalytic isomerization by the method of mathematical modelling. 

2. Object and method of research 

The object of the current research is the industrial process of catalytic isomerization, which 
is aimed to produce gasoline fuel of meeting EURO standards. 

Development of new and intensification of existing catalytic processes is effectively per-
formed by the method of mathematical modeling, the methodology and foundations of which 
were described in the classical works of the Academician of the Russian Academy of Sciences 
GK Boreskov and the Corresponding Member of the Russian Academy of Sciences MG Slinko 
in 1960-1970s [11] at the Boreskov Institute of Catalysis Siberian Branch of the Russian Acad-

emy of Sciences (Boreskov and Slinko [12-14]). 
Further works of Slinko [15] are devoted to the theory of catalytic reactions, processes and 

reactors. Significant contribution to the development of mathematical modeling of catalytic 
processes and reactors was made by the followers of MG Slinko: VS Beskov [16], Matros [17], 

413



Petroleum and Coal 

                         Pet Coal (2019); 61(2): 413-417 
ISSN 1337-7027 an open access journal 

GS Yablonsky [18], AS Noskov [19], ED Ivancina [20-24], and foreign researchers: R Aris [25], GF 
Froment [26]. 

The feedstock for the process of catalytic isomerization light naphtha passes through two 
successive reactors with a catalyst, then enters the stabilization column. The sequential ar-
rangement of the reactors allows the process to be carried out continuously, while in one 

reactor the catalyst regeneration takes place; in the second one, the isomerization process 
takes place. This method of operation allows for economical use of the catalyst without inter-
rupting production. This scheme is the simplest variant of isomerization. To describe the 
process of isomerization by mathematical modeling, the following steps are required: 
- thermodynamic analysis of the process; 

- evaluation of the kinetic parameters of the possible reaction; 
- model of the reactor; 
- construction of the technological scheme. 

Isomerization reactions are reversible processes in which the system tends to a thermody-
namic equilibrium between n-paraffins and isoparaffins. The main reactions occurring in the 
reactor are shown in Fig. 1 with the indication of octane numbers according to the research 

method. 

 

Figure 1. Main reactions of the isomerization process at T = 130°C, P = 3 MPa, on Pt/SO4-ZrO2 catalyst 

Experimental data of industrial run of the isomerization unit were used in the construction 

of a mathematical model. Changes in the composition of raw materials used for the calculation 
are shown in Table 1. 

Such change in the feedstock composition requires constant correction of the mode of the 
isomerization reactor operation, determination and maintenance of optimal technological pa-
rameters for the exact feedstock composition in order to obtain the maximum yield of the 

product meets required quality. In this work, the influence of temperature and feedstock flow 
rate on the yield was studied, as well as a technological mode for the two variants of unit 
operation was optimized using the developed mathematical model. 

Table 1. Changes in raw material composition 

Сomponent wt. % Сomponent wt. % 

isopentane 7.3 – 15.4 3- methylpentane 6.7 – 13.3 

n-pentane 14.9 – 28.9 n-hexane 7.1 – 17.1 
2,2 - dimethylbutane  0.3 – 1.1 Methylcyclopentane 2.6 – 11 

cyclopentane 5 – 13.3 Benzene 0.7 – 1.6 

2,3- dimethylbutane 1.6 – 3.1 Cyclohexane 0.4 – 7.2 
2- methylpentane 13.9 – 20.7   

The model is written as a system of material and heat balances as follows: 
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(1) 

Initial and boundary conditions are as follows: z=0: Ci=Ci,0; T=T0; V=0: Ci=Ci,0; T=T0, 
where z is the volume of refined feedstock from the moment of fresh catalyst load, m3; G is 
the feedstock flow rate, m3/h; z = G·t (t is the catalyst operating time from the moment of 

fresh catalyst load, h); Ci is the content of ith component, mol/l; V is the catalyst bed volume, 
m3; aj is the catalyst activity in jth reaction; ρ is the density of mixture, kg/m3; Cp

mix is the 
specific heat capacity of the mixture, J/(kg·K); Qj is the heat effect of jth reaction, J/mol; T is 
the temperature, K; Wj is the rate of jth reaction, mol/(l·s); m is the number of reactions. In 
the above system of equations, the residence time of the reagents in the reaction zone, which 

depends on the hourly flow rate of the feedstock G and the volume of the catalyst V, under 
the conditions of the unstable load of the industrial plant for feedstock is replaced by the 
“reduced time” z = G·t, equal to the total volume of the processed feedstock during the time  t. 

The system of differential equations is solved by the difference method and is implemented 
in the object-oriented Delphi environment. 

3. Experimental 

3.1. Studying the influence of temperature on the izomerization process 

The process of isomerization of light gasoline is equilibrium, and the quality of the resulting 

product depends on the equilibrium position between the target and side reactions. At low 
temperatures, the process slows down the kinetic factor due to the low values of the isomer-
ization rate constants of normal alkanes. At high temperatures manifests the thermodynamic 
factor of the deceleration of the process: because isomerizes normal paraffins are favorable 
to low temperature because of its exothermic. The results of predictive calculations are shown 

in Fig. 2.  
An increase in the isomerization temperature above the optimum (138-142°C for raw ma-

terials with a low content of naphthenic and aromatic hydrocarbons, 145-147°C for raw ma-
terials with a high content of naphthenic, 148-155°C for raw materials with a high content of 
aromatic and naphthenic hydrocarbons) leads to a decrease in the yield of isomerizate due to 
an increase in the contribution of adverse reactions. 

  
A-sulfated catalyst B-chlorinated catalyst 

Figure 2. Yield of C5-C6 isoalkanes depending on temperature: (●) – composition No. 1, (■) – com-

position No. 3, (▲) – composition No. 6 
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3.2. Studying the influence of feedstock flow rate on the izomerization process 

 

As the load on the raw material in-

creases on the isomerization reactor unit, 
the contact time of the raw material with 
the catalyst decreases, and the octane 
number of the isomerizate obtained de-
creases. The forecast is based on models 
of the influence of feed loading on the oc-

tane number of the isomerized product to 
the isomerization with recycling of n-C5-
C6 and the low-branched hexanes pre-
sented in Fig. 3. 
 

Figure 3 Octane number(RON) isomerizate 

depending on the volumetric feed rate of raw 
materials for isomerization technology with n-

C5-C6 recycle and low-branched hexanes 

4. Conclusions 

The influence of temperature and feedstock flow rate in the rages 320–360 C and 290–
330 m3/h respectively on the cold flow properties and yield of the product (diesel fuel) was 
studied depending on the feedstock composition. The temperature mode of the process was 

optimized depending on the composition and feedstock flow rate. 
The optimal temperature range in reactors is determined by the technological mode of the 

process, the composition of the processed raw materials, as well as the hardware design of 
the process. The high content of naphthenic and aromatic hydrocarbons in raw materials leads 
to inhibition of transformation of normal alkanes into isoalkanes. Depending on the type of 

catalyst, the optimum temperature lies in the range of 138-142°C for raw materials with a 
low content of naphthenic and aromatic hydrocarbons, 145-147°C for raw materials with a 
high content of naphthenic, 148-155°C for raw materials with a high content of aromatic aR 
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